如何绘制y= x+(1/ x)图像
展开全部
绘制y=x+(1/x)图像如下:
分析函数y=x+(1/x),定义域为[-∞,0)∩(0,+∞],所以x=0为函数的垂直渐近线。
对函数求导y'=1-(1/x^2),所以当x=±1时,y'=0,函数只有在有限的定义域内在能取到最值;x=±∞时候,y'=1,即y=x是函数y=x+(1/x)的斜渐近线。
双钩函数
函数f(x)=ax+b/x(a>0,b>0)叫做双钩函数。
该函数是奇函数,图象关于原点对称。位于第一、三象限。
当x>0时,由基本不等式可得:y≥2√ab
当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询