微分和导数是一回事吗

 我来答
科技打工人
2023-01-27 · TA获得超过338个赞
知道小有建树答主
回答量:921
采纳率:100%
帮助的人:86.2万
展开全部
  微分和求导不是一回事。导数是微分之商,导数的几何意义是函数图像在某一点处的斜率,而微分是在切线方向上函数因变量的增量。

  区别微分定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

  求导定义:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

  导数和微分的区别一个是比值、一个是增量。

  1、导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。

  2、微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。

  微分和导数的关系对于函数f(x),求导f'(x)=df(x)/dx,微分就是df(x),微分和导数的关系为df(x)=f'(x)dx。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式