不等式的求解方法
展开全部
不等式的求解方法:
解一元二次不等式的一般步骤:
1、对不等式变形,使一端为0且二次项系数大于0,即ax2+bx+c>0(a>0),ax2+bx+c<0(a>0);
2、计算相应的判别式;
3、当Δ≥0时,求出相应的一元二次方程的根;
4、根据对应二次函数的图象,写出不等式的解集。
一元二次不等式有哪些解法
1、公式法:公式法不能解没有实数根的方程(也就是b²-4ac<0的方程)。求根公式: x=-b±√(b^2-4ac)/2a。
2、配方法:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。
3、数轴穿根:
用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点。
大于零的不等式的解对应这曲线在x轴上方部分的实数x的值的集合,小于零的则相反。口诀是“从右到左,从上到下,奇穿偶不穿。”
4、一元二次函数图象:通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求"<0"或">0"而推出答案。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询