数学九年级期中上册知识点
1.数学九年级期中上册知识点
一元二次方程
1、认识一元二次方程
只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0
(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程
①配方法即将其变为(x+m)2=0的形式>
配方法解一元二次方程的基本步骤:
把方程化成一元二次方程的一般形式;
将二次项系数化成1;
把常数项移到方程的右边;
两边加上一次项系数的一半的平方;
把方程转化成的形式;
两边开方求其根。
3、用公式法求解一元二次方程
②公式法(注意在找abc时须先把方程化为一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5、一元二次方程的根与系数的关系
①根与系数的关系:
当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:
③一元二次方程的根与系数的关系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
已知方程的两根x1、x2,可以构造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、应用一元二次方程
在利用方程来解应用题时,主要分为两个步骤:
设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);
寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
2.数学九年级期中上册知识点
1、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。
(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m。
直接开平方法就是平方的逆运算。通常用根号表示其运算结果。
(2)配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)。
2)系数化1:将二次项系数化为1。
3)移项:将常数项移到等号右侧。
4)配方:等号左右两边同时加上一次项系数一半的平方。
5)变形:将等号左边的代数式写成完全平方形式。
6)开方:左右同时开平方。
7)求解:整理即可得到原方程的根。
(3)公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圆的必考知识点
(1)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(2)圆的相关特点
1)径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r。
2)弦
连接圆上任意两点的线段叫做弦。在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
3)弧
圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
4)角
顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
3.数学九年级期中上册知识点
1、数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏);2)有标准。
2、非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3、倒数:①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4、相反数:①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5、数轴:①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6、奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7、绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
4.数学九年级期中上册知识点
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)。
5.数学九年级期中上册知识点
特殊平行四边形
1、菱形的性质与判定
①菱形的定义:
一组邻边相等的平行四边形叫做菱形。
②菱形的性质:
具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别方法:
一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定
①矩形的定义:
有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
②矩形的性质:
具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
③矩形的判定:
有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定
①正方形的定义:
一组邻边相等的矩形叫做正方形。
②正方形的性质:
正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
③正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系
⑤梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:
等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半