切线放缩证明导数不等式
切线放缩证明导数不等式介绍如下:
切线放缩是考试中的经典考法,最经典的不等式有e^x>=x+1,linx<=x-1及其变形。切线放缩可以化曲为直,化超越式为便于处理的线性式或无超越式函数予以处理,并能够达到局部的近似模拟,关注函数形态,把握其凹凸性、变化趋势是关键,通常是借助切线搭桥,从而证明问题。
切线不等式是构造函数不等式的一种常用方法。多用于将指数、对数、无理根式统一到一阶幂函数的形式,用时还需考虑函数的凹凸性(凹凸性过于复杂的函数需慎用),难点是寻找切线放缩的位置通常于端点处进行放缩,不行的话后移选取特殊点,若还是搞不定则需要待定系数法进行选取。
证明不等式是学生的弱点与难点,也是高考的热点。本文就以利用导数证明不等式为例,谈一些具体做法,仅供参考。
一、用函数的单调性证明不等式 注用函数的单调性证明不等式的一般思路:
(1)构造函数f(x);
(2)利用导数确定f(x)在某一区间的单调性;
(3)依据该区间的单调性证不等式。
二、用函数的最值证明不等式
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。