证明菱形的判定

 我来答
跑路人J
2023-03-10 · TA获得超过202个赞
知道大有可为答主
回答量:4073
采纳率:98%
帮助的人:74.5万
展开全部

菱形的判定定理

1、四条边相等的四边形是菱形。

证明:

∵AB=CD,BC=AD,

∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).

又∵AB=BC,

∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形). 

2、对角线互相垂直的平行四边形是菱形。

证明:

∵ 四边形ABCD是平行四边形,

∴ OA=OC(平行四边形的对角线相互平分)。

又∵AC⊥BD,

∴ BD所在直线是线段AC的垂直平分线,

∴ AB=BC,

∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。

3、有一组邻边相等的平行四边形是菱形。

RF是三角形ABD的中位线,于是RF∥AD,

同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,

所以四边形RFGH是平行四边形;

第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。

扩展资料

菱形定理的运用:

已知:如图,在◇ABCD中,对角线AC的垂直平分线分别与AD、AC、BC分别交于点E、O、F。则四边形AFCE是菱形。

证明:

∵ 四边形ABCD是平行四边形,  

∴ AE∥FC(平行四边形的对边平行),

∴ ∠EAO=∠FCO.

∵ EF平分AC,

∴ AO=OC.

又∵ ∠AOE=∠COF=90°,

∴ △AOE≌△COF(ASA),

∴ EO=FO,

∴ 四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形)。

又∵EF⊥AC,

∴ 四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式