初二上册数学期末试卷及答案2017
1个回答
展开全部
一、细心选一选(本题共10小题,每小题3分,共30分)
【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】
题号12345678910
答案
1、点(-1,2)位于()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
2、若∠1和∠3是同旁内角,∠1=78度,那么下列说法正确的是()
(A)∠3=78度(B)∠3=102度(C)∠1+∠3=180度(D)∠3的度数无法确定
3.如图,已知∠1=∠2,则下列结论一定正确的是()
(A)∠3=∠4(B)∠1=∠3(C)AB//CD(D)AD//BC
4.小明、小强、小刚家在如图所示的点A、B、C三个地方,它们的连线恰好构成一个直角三角形,B,C之间的距离为5km,新华书店恰好位于斜边BC的中点D,则新华书店D与小明家A的距离是()
(A)2.5km(B)3km(C)4km(D)5km
5.下列能断定△ABC为等腰三角形的是()
(A)∠A=30º、∠B=60º(B)∠A=50º、∠B=80º
(C)AB=AC=2,BC=4(D)AB=3、BC=7,周长为13
6.某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。山高h与游客爬山所用时间t之间的函数关系大致图形表示是()
7.下列不等式一定成立的是()
(A)4a>3a(B)3-x<4-x(C)-a>-3a(D)4a>3a
8.如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是()
(A)17(B)18(C)19(D)
9.一次函数y=x图象向下平移2个单位长度再向右平移3个单位长度后,对应函数关系式是()
(A)y=2x-8(B)y=12x(C)y=x+2(D)y=x-5
10.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=()
(A)5(B)4(C)6(D)、10
二、精心填一填(每小题3分,共24分)
11.点P(3,-2)关于y轴对称的点的坐标为.
12.已知等腰三角形的两边长分别为3和5,则它的周长是.
13.在Rt△ABC中,CD、CF是AB边上的高线与中线,若AC=4,BC=3,则CF=;CD=.
14.已知等腰三角形一腰上的中线将它周长分成9cm和6cm两部分,则这个等腰三角形的底边长是__
15.一次函数y=kx+b满足2k+b=-1,则它的图象必经过一定点,这定点的坐标是.
16.已知坐标原点O和点A(1,1),试在X轴上找到一点P,使△AOP为等腰三角形,写出满足条件的点P的坐标__
17.如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ABC的周长为.
18.如图,有八个全等的直角三角形拼成一个大四边形ABCD和中间一个小四边形MNPQ,连接EF、GH得到四边形EFGH,设S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3,则S2=.
三、仔细画一画(6分)
19.(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h
└─────┘a└──────┘h
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标。
四、用心做一做(40分)
20.(本题6分)解下列不等式(组),并将其解集在数轴上表示出来。
(1)x+16<5-x4+1(2)2x>x+2;①
x+8>x-1;②
21.(本题5分)如图,已知AD∥BC,∠1=∠2,说明∠3+∠4=180°,请完成说明过程,并在括号内填上相应依据:
解:∠3+∠4=180°,理由如下:
∵AD∥BC(已知),
∴∠1=∠3()
∵∠1=∠2(已知)
∴∠2=∠3(等量代换);
∴∥()
∴∠3+∠4=180°()
22.(本题5分)如图,在△ABC中,点D、E在边BC上,且AB=AC,AD=AE,请说明BE=CD的理由.
23.(本题6分)某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套)。
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.
(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?
24.(本题8分)“十一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩,该小汽车离家的路程S(千米)与时间t(时)的关系可以用右图的折线表示。根据图象提供的有关信息,解答下列问题:
(1)小刚全家在旅游景点游玩了多少小时?
(2)求出整个旅程中S(千米)与时间t(时)的函数关系式,并求出相应自变量t的取值范围。
(3)小刚全家在什么时候离家120㎞?什么时候到家?
25.(本题10分)如图,已知直线y=﹣34x+3与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.
(1)求△AOB的面积;
(2)求点C坐标;
(3)点P是x轴上的一个动点,设P(x,0)
①请用x的代数式表示PB2、PC2;
②是否存在这样的点P,使得|PC-PB|的值?如果不存在,请说明理由;
如果存在,请求出点P的坐标.
数学参考答案
一、细心选一选(本题共10小题,每小题3分,共30分)
【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】
题号12345678910
答案BDDABDBCDC
XkB1.com
二、精心填一填(每小题3分,共24分)
11.(-3,-2)12.11或3
132.5,2.4143或7
15(2,-1)16(1,0)(2,0)(2,0)(-,0)
171418203
三、仔细画一画(6分)
19.(1)图形略图形画正确得2分,结论得1分.
(2)解:A1(2,-3)B1(1,-1)C1(3,2)…………得2分画出图形得1分
四、用心做一做(40分)
20.(本题6分)(1)解:去分母,得2(x+1)<3(5-x)+12
去括号移项,得2x+3x<15+12-2
合并同类项,得5x<25
方程两边都除5,得x<5
∴原不等式的解集为x<5如图所示:
(2)解:由①得,x>2
由②得,x<3
∴原不等式的解集为2<x<3如图所示:
21.(本题5分)解:∠3+∠4=180°,理由如下:
∵AD∥BC(已知),
∴∠1=∠3(两直线平行,内错角相等);
∵∠1=∠2(已知)
∴∠2=∠3(等量代换);
∴EB∥DF(同位角相等,两直线平行)
∴∠3+∠4=180°(两直线平行,同胖内角互补)
www.xKb1.coM
22.(本题5分)解:∵AB=AC,AD=AE
∴∠ABC=∠ACB,∠ADC=∠AEB(等角对等边)
又∵在△ABE和△ACD中,
∠ABC=∠ACB(已证)
∠ADC=∠AEB(已证)
AB=AC(已知)
∴△ABE≌△ACD(AAS)
∴BE=CD(全等三角形的对应边相等)
23.(本题6分)
解(1):设总费用y(元)与销售套数x(套),
根据题意得到函数关系式:y=50000+200x.
解(2):设软件公司至少要售出x套软件才能确保不亏本,
则有:400x≥50000+200x解得:x≥250
答:软件公司至少要售出250套软件才能确保不亏本.
24.(本题8分)
解:(1)4小时
(2)①当8≤t≤10时,
设s=kt+b过点(8,0),(10,180)得s=90t-720
②当10≤t≤14时,得s=180
③当14≤t时过点(14,180),(15,120)
∴s=90t-720(8≤t≤10)s=180(10≤t≤14)s=-60t+1020(14≤t)
(3)①当s=120km时,90t-720=120得t=9即9时20分
-60t+1020=120得t=15
②当s=0时-60t+1020=0得t=17
答:9时20分或15时离家120㎞,17时到家。
25.(本题10分)
(1)由直线y=-x+3,令y=0,得OA=x=4,令x=0,得OB=y=3,
(2)过C点作CD⊥x轴,垂足为D,
∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
又∵AB=AC,∠AOB=∠CDA=90°,
∴△OAB≌△DCA,
∴CD=OA=4,AD=OB=3,则OD=4+3=7,
∴C(7,4);
(3)①由(2)可知,PD=7-x,
在Rt△OPB中,PB2=OP2+OB2=x2+9,
Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,
②存在这样的P点.
设B点关于x轴对称的点为B′,则B′(0,-3),
连接CB′,设直线B′C解析式为y=kx+b,将B′、C两点坐标代入,得
b=-3;
7k+b=4;
k=1
解得b=-3
所以,直线B′C解析式为y=x-3,
令y=0,得P(3,0),此时|PC-PB|的值,
故答案为:(3,0).
【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】
题号12345678910
答案
1、点(-1,2)位于()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
2、若∠1和∠3是同旁内角,∠1=78度,那么下列说法正确的是()
(A)∠3=78度(B)∠3=102度(C)∠1+∠3=180度(D)∠3的度数无法确定
3.如图,已知∠1=∠2,则下列结论一定正确的是()
(A)∠3=∠4(B)∠1=∠3(C)AB//CD(D)AD//BC
4.小明、小强、小刚家在如图所示的点A、B、C三个地方,它们的连线恰好构成一个直角三角形,B,C之间的距离为5km,新华书店恰好位于斜边BC的中点D,则新华书店D与小明家A的距离是()
(A)2.5km(B)3km(C)4km(D)5km
5.下列能断定△ABC为等腰三角形的是()
(A)∠A=30º、∠B=60º(B)∠A=50º、∠B=80º
(C)AB=AC=2,BC=4(D)AB=3、BC=7,周长为13
6.某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。山高h与游客爬山所用时间t之间的函数关系大致图形表示是()
7.下列不等式一定成立的是()
(A)4a>3a(B)3-x<4-x(C)-a>-3a(D)4a>3a
8.如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是()
(A)17(B)18(C)19(D)
9.一次函数y=x图象向下平移2个单位长度再向右平移3个单位长度后,对应函数关系式是()
(A)y=2x-8(B)y=12x(C)y=x+2(D)y=x-5
10.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=()
(A)5(B)4(C)6(D)、10
二、精心填一填(每小题3分,共24分)
11.点P(3,-2)关于y轴对称的点的坐标为.
12.已知等腰三角形的两边长分别为3和5,则它的周长是.
13.在Rt△ABC中,CD、CF是AB边上的高线与中线,若AC=4,BC=3,则CF=;CD=.
14.已知等腰三角形一腰上的中线将它周长分成9cm和6cm两部分,则这个等腰三角形的底边长是__
15.一次函数y=kx+b满足2k+b=-1,则它的图象必经过一定点,这定点的坐标是.
16.已知坐标原点O和点A(1,1),试在X轴上找到一点P,使△AOP为等腰三角形,写出满足条件的点P的坐标__
17.如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ABC的周长为.
18.如图,有八个全等的直角三角形拼成一个大四边形ABCD和中间一个小四边形MNPQ,连接EF、GH得到四边形EFGH,设S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3,则S2=.
三、仔细画一画(6分)
19.(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h
└─────┘a└──────┘h
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标。
四、用心做一做(40分)
20.(本题6分)解下列不等式(组),并将其解集在数轴上表示出来。
(1)x+16<5-x4+1(2)2x>x+2;①
x+8>x-1;②
21.(本题5分)如图,已知AD∥BC,∠1=∠2,说明∠3+∠4=180°,请完成说明过程,并在括号内填上相应依据:
解:∠3+∠4=180°,理由如下:
∵AD∥BC(已知),
∴∠1=∠3()
∵∠1=∠2(已知)
∴∠2=∠3(等量代换);
∴∥()
∴∠3+∠4=180°()
22.(本题5分)如图,在△ABC中,点D、E在边BC上,且AB=AC,AD=AE,请说明BE=CD的理由.
23.(本题6分)某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套)。
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.
(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?
24.(本题8分)“十一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩,该小汽车离家的路程S(千米)与时间t(时)的关系可以用右图的折线表示。根据图象提供的有关信息,解答下列问题:
(1)小刚全家在旅游景点游玩了多少小时?
(2)求出整个旅程中S(千米)与时间t(时)的函数关系式,并求出相应自变量t的取值范围。
(3)小刚全家在什么时候离家120㎞?什么时候到家?
25.(本题10分)如图,已知直线y=﹣34x+3与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.
(1)求△AOB的面积;
(2)求点C坐标;
(3)点P是x轴上的一个动点,设P(x,0)
①请用x的代数式表示PB2、PC2;
②是否存在这样的点P,使得|PC-PB|的值?如果不存在,请说明理由;
如果存在,请求出点P的坐标.
数学参考答案
一、细心选一选(本题共10小题,每小题3分,共30分)
【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】
题号12345678910
答案BDDABDBCDC
XkB1.com
二、精心填一填(每小题3分,共24分)
11.(-3,-2)12.11或3
132.5,2.4143或7
15(2,-1)16(1,0)(2,0)(2,0)(-,0)
171418203
三、仔细画一画(6分)
19.(1)图形略图形画正确得2分,结论得1分.
(2)解:A1(2,-3)B1(1,-1)C1(3,2)…………得2分画出图形得1分
四、用心做一做(40分)
20.(本题6分)(1)解:去分母,得2(x+1)<3(5-x)+12
去括号移项,得2x+3x<15+12-2
合并同类项,得5x<25
方程两边都除5,得x<5
∴原不等式的解集为x<5如图所示:
(2)解:由①得,x>2
由②得,x<3
∴原不等式的解集为2<x<3如图所示:
21.(本题5分)解:∠3+∠4=180°,理由如下:
∵AD∥BC(已知),
∴∠1=∠3(两直线平行,内错角相等);
∵∠1=∠2(已知)
∴∠2=∠3(等量代换);
∴EB∥DF(同位角相等,两直线平行)
∴∠3+∠4=180°(两直线平行,同胖内角互补)
www.xKb1.coM
22.(本题5分)解:∵AB=AC,AD=AE
∴∠ABC=∠ACB,∠ADC=∠AEB(等角对等边)
又∵在△ABE和△ACD中,
∠ABC=∠ACB(已证)
∠ADC=∠AEB(已证)
AB=AC(已知)
∴△ABE≌△ACD(AAS)
∴BE=CD(全等三角形的对应边相等)
23.(本题6分)
解(1):设总费用y(元)与销售套数x(套),
根据题意得到函数关系式:y=50000+200x.
解(2):设软件公司至少要售出x套软件才能确保不亏本,
则有:400x≥50000+200x解得:x≥250
答:软件公司至少要售出250套软件才能确保不亏本.
24.(本题8分)
解:(1)4小时
(2)①当8≤t≤10时,
设s=kt+b过点(8,0),(10,180)得s=90t-720
②当10≤t≤14时,得s=180
③当14≤t时过点(14,180),(15,120)
∴s=90t-720(8≤t≤10)s=180(10≤t≤14)s=-60t+1020(14≤t)
(3)①当s=120km时,90t-720=120得t=9即9时20分
-60t+1020=120得t=15
②当s=0时-60t+1020=0得t=17
答:9时20分或15时离家120㎞,17时到家。
25.(本题10分)
(1)由直线y=-x+3,令y=0,得OA=x=4,令x=0,得OB=y=3,
(2)过C点作CD⊥x轴,垂足为D,
∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
又∵AB=AC,∠AOB=∠CDA=90°,
∴△OAB≌△DCA,
∴CD=OA=4,AD=OB=3,则OD=4+3=7,
∴C(7,4);
(3)①由(2)可知,PD=7-x,
在Rt△OPB中,PB2=OP2+OB2=x2+9,
Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,
②存在这样的P点.
设B点关于x轴对称的点为B′,则B′(0,-3),
连接CB′,设直线B′C解析式为y=kx+b,将B′、C两点坐标代入,得
b=-3;
7k+b=4;
k=1
解得b=-3
所以,直线B′C解析式为y=x-3,
令y=0,得P(3,0),此时|PC-PB|的值,
故答案为:(3,0).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询