设F(x)是某随机变量X的分布函数,已知P(X<2)=0.4,P(X=2)=0.1,P(X>3)=?
1个回答
展开全部
由概率的定义可知,对于任意一个实数a,有:
P(X≤a) = F(a)
P(X>a) = 1 - P(X≤a) = 1 - F(a)
所以:
P(X<2) = F(2) = 0.4
P(X=2) = F(2) - F(2-) = 0.1
P(X>3) = 1 - P(X≤3) = 1 - F(3)
因此,我们需要求出F(3)。根据分布函数的定义,有:
F(x) = P(X≤x)
所以:
F(2) = P(X≤2) = 0.4
F(2-) = lim_(x→2-) F(x) = F(2) - P(X=2) = 0.4 - 0.1 = 0.3
因此:
P(X>3) = 1 - F(3) = 1 - P(X≤3)
要计算P(X≤3),我们需要分别考虑X≤2和2<X≤3这两种情况。由于P(X=2)=0.1,所以:
P(X≤2) = F(2) = 0.4
P(2<X≤3) = F(3) - F(2) = P(X≤3) - P(X≤2) = 1 - 0.4 - 0.1 = 0.5
因此:
P(X>3) = 1 - F(3) = 1 - P(X≤3) = 1 - (P(X≤2) + P(2<X≤3)) = 1 - (0.4 + 0.5) = 0.1
所以P(X>3)=0.1。
P(X≤a) = F(a)
P(X>a) = 1 - P(X≤a) = 1 - F(a)
所以:
P(X<2) = F(2) = 0.4
P(X=2) = F(2) - F(2-) = 0.1
P(X>3) = 1 - P(X≤3) = 1 - F(3)
因此,我们需要求出F(3)。根据分布函数的定义,有:
F(x) = P(X≤x)
所以:
F(2) = P(X≤2) = 0.4
F(2-) = lim_(x→2-) F(x) = F(2) - P(X=2) = 0.4 - 0.1 = 0.3
因此:
P(X>3) = 1 - F(3) = 1 - P(X≤3)
要计算P(X≤3),我们需要分别考虑X≤2和2<X≤3这两种情况。由于P(X=2)=0.1,所以:
P(X≤2) = F(2) = 0.4
P(2<X≤3) = F(3) - F(2) = P(X≤3) - P(X≤2) = 1 - 0.4 - 0.1 = 0.5
因此:
P(X>3) = 1 - F(3) = 1 - P(X≤3) = 1 - (P(X≤2) + P(2<X≤3)) = 1 - (0.4 + 0.5) = 0.1
所以P(X>3)=0.1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询