log函数的乘法和加法怎么算?
1个回答
展开全部
log的乘法一般都用换底公式来解决
loga(b)=logc(a)/logc(b)
log的加法,在底数相同的情况下,直接真数相乘
loga(b)+loga(c)=loga(bc)
例如:
㏒底数2,真数5乘以㏒底数3,真数81
log2(5)*log3(81)=log2(5)*4
扩展资料
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
百事牛
2024-10-22 广告
2024-10-22 广告
百事牛是共享提供商,我们提供可靠有效的服务,适当合理的授权费有利于的继续更新优化。同样的事情,同样的方法,百事牛团队十年磨一剑,始终至聚焦在密码恢复领域,深耕于此,我们已研制出有别于其他公司的算法和运算模式, 百事牛的暴力模式加入了分布式点...
点击进入详情页
本回答由百事牛提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询