logistic回归的应用条件
展开全部
Logistic回归模型的适用条件如下:
1、 因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。
2、残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。
3、自变量和Logistic概率是线性关系。各观测对象间相互独立。
logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b。
而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
2023-08-07 · 百度认证:SPSSAU官方账号,优质教育领域创作者
关注
展开全部
Logit回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据(可以做虚拟变量设置),也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。logit回归分析一般可分为三类,分别是二元logit回归、多分类logit回归、有序logit回归,三类logit回归区别如下:
(1)二元logit回归分析,因变量为二分类变量。
(2)多分类logit回归。因变量为分类数据多组且无序。
(3)有序logit回归,因变量为分类数据多组且有序。
二元Logit回归分析用于研究X对于Y的影响关系,其中X为定量数据或者定类数据,Y为二分类定类数据,(Y的数字一定只能为0和1)例如愿意和不愿意、是和否等。
(1)如果X是定类数据,比如性别或学历等。那么就需要首先对它们做虚拟哑变量处理,使用SPSSAU“数据处理”-“生成变量”功能。操作如下图:
因变量Y只能包括数字0和1,如果因变量的原始数据不是这样,那么就需要数据编码,设置成0和1,使用SPSSAU“数据处理”-“数据编码”功能,操作如下图:
(2)多分类logit回归
只要是logit回归,都是研究X对于Y的影响,区别在于因变量Y上,如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“黑龙江省”,2代表“云南省”,3代表“四川省”,4代表“陕西省”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多分类Logit回归分析。如果说因变量Y的类别个数很多,比如为10个,此时建议时对类别进行组合下,尽量少的减少类别数量,便于后续进行分析。此步骤可通过SPSSAU数据处理模块的数据编码功能完成。
在“进阶方法”模块中选择“多分类Logit”方法,将Y定类变量放于上方分析框内,X定类/定量变量放于下方分析框内,点击“开始分析”即可。
有序logit回归:
只要是logit回归,都是研究X对于Y的影响,区别在于因变量Y上,如果Y有多个选项,并且各个选项之间具有对比意义,例如:1代表不满意,2代表一般,3代表满意就可以使用有序logit回归分析。
在“进阶方法”模块中选择“有序Logit”方法,将Y定类变量放于上方分析框内,X定类/定量变量放于下方分析框内,点击“开始分析”即可。
(1)二元logit回归分析,因变量为二分类变量。
(2)多分类logit回归。因变量为分类数据多组且无序。
(3)有序logit回归,因变量为分类数据多组且有序。
二元Logit回归分析用于研究X对于Y的影响关系,其中X为定量数据或者定类数据,Y为二分类定类数据,(Y的数字一定只能为0和1)例如愿意和不愿意、是和否等。
(1)如果X是定类数据,比如性别或学历等。那么就需要首先对它们做虚拟哑变量处理,使用SPSSAU“数据处理”-“生成变量”功能。操作如下图:
因变量Y只能包括数字0和1,如果因变量的原始数据不是这样,那么就需要数据编码,设置成0和1,使用SPSSAU“数据处理”-“数据编码”功能,操作如下图:
(2)多分类logit回归
只要是logit回归,都是研究X对于Y的影响,区别在于因变量Y上,如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“黑龙江省”,2代表“云南省”,3代表“四川省”,4代表“陕西省”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多分类Logit回归分析。如果说因变量Y的类别个数很多,比如为10个,此时建议时对类别进行组合下,尽量少的减少类别数量,便于后续进行分析。此步骤可通过SPSSAU数据处理模块的数据编码功能完成。
在“进阶方法”模块中选择“多分类Logit”方法,将Y定类变量放于上方分析框内,X定类/定量变量放于下方分析框内,点击“开始分析”即可。
有序logit回归:
只要是logit回归,都是研究X对于Y的影响,区别在于因变量Y上,如果Y有多个选项,并且各个选项之间具有对比意义,例如:1代表不满意,2代表一般,3代表满意就可以使用有序logit回归分析。
在“进阶方法”模块中选择“有序Logit”方法,将Y定类变量放于上方分析框内,X定类/定量变量放于下方分析框内,点击“开始分析”即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询