定积分换元公式

 我来答
嗯嗯生活解答
2023-03-02 · TA获得超过1920个赞
知道大有可为答主
回答量:8316
采纳率:99%
帮助的人:122万
展开全部

定积分换元公式是∫baf(x)dx=∫βαf([φ(t)])φ′(t)dt。

设函数f(x)在区间[a,b]上连续,函数x=φ(t)满足条件:(1)φ(α)=a,φ(β)=b。(2)φ(t)在[α,β](或

[β,α])上具有连续导数,且值域Rφ=[a,b],则有∫baf(x)dx=∫βαf([φ(t)])φ′(t)dt。

证明:

设F′(x)=f(x),则∫baf(x)dx=F(b)−F(a)设Φ(t)=F(φ(t)),则Φ′(t)=F′(φ(t))φ′(t)=f(φ(t))φ′(t)。

从而∫βαf[φ(t)]φ′(t)dt=Φ(t)∣∣βα=Φ(β)−Φ(α)=F(φ(β))−F(φ(α))=F(b)−F(a)。

∴∫baf(x)dx=∫βαf[φ(t)]φ′(t)dt。

令x=φ(t),dx=φ′(t)dt,∫βαf(φ(t))⋅φ′(t)dt。

注意事项:

1、当积分表达式中含有根式,分式等形式时,可以利用换元法进行积分,试题中一般会指定表达式中的某一部分作为替换的部分。在利用换元法做定积分题目时一定要注意更改相应的定积分上下限。

2、当遇到两部分函数相乘的形式作为被积函数,可以考虑使用分部积分的方法。注意选择合适的部分作为公式的u,另一部分即为dv/dx,这点也需要多加注意。

3、定积分的换元积分法要记得积分上下限的改变,若直接应用分部积分公式,则积分化得更复杂.所以需要先用换元法。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式