判断级数收敛的八种方法
1个回答
展开全部
判断级数收敛的方法是:判定正项级数的敛散性、判定交错级数的敛散性、求幂级数的收敛半径、收敛区间和收敛域、求幂级数的和函数与数项级数的和、将函数展开为傅里叶级数
对于所有级数都适用的根本方法是:柯西收敛准则。因为它的本质是将级数转化成数列,从而这是一个最强的判别法,柯西收敛准则成立是级数收敛的充分必要条件。
从数项级数的定义入手,了解和掌握数项级数收敛的定义,挖掘出部分和数列收敛判别法、余和判别法。
掌握数项级数收敛的性质,推导出夹逼定理和奇、偶子级数收敛判别法、Cauchy收敛准则。
研究一般项级数的收敛方法:交错级数的Leibniz判别法,Dirichlet判别法,能够根据部分和来判别数列是否收敛;比值法和根值法是必须要掌握的;比较法的运用相对较灵活;积分法也十分不错。
判断级数敛散性的方法:判定正项级数的敛散性;判定交错级数的敛散性;求幂级数的收敛半径、收敛区间和收敛域;求幂级数的和函数与数项级数的和;将函数展开为傅里叶级数。
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询