循环小数化分数的方法

 我来答
帐号已注销
2023-03-01 · TA获得超过1467个赞
知道大有可为答主
回答量:1.1万
采纳率:97%
帮助的人:233万
展开全部

循环小数化分数的方法介绍如下:

1、纯循环小数化成分数的法则是:抄下一个循环节作为分子;连写几个9作为分母,9的个数等于一个循环节的位数。

例如:0.7272……循环节为7,2两位,因此化为分数为72/99=1/8;

2、混循环小数化成分数的法则是:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。分母的头几位数是9,末几位是0。9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

例如0.41666……化成分数,第二个循环节以前的小数部分组成的数416,小数部分中不循环部分组成的数41,差是416-41=375作为分子;循环节中的位数是1位,9的个数是1,不循环部分的位数是2位,0的个数是2,900作为分母。因此化为分数为375/900=5/12。

扩展资料:

无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……

循环节为3。

则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……

前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)。

当n趋向无穷时(0.1)^(n)=0。

因此0.3333……=0.3/0.9=1/3。

注意:m^n的意义为m的n次方。

再如:0.999999.......

循环节为9。

则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……

前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)。

当n趋向无穷时(0.1)^n=0。

因此:0.99999.....=0.9/0.9=1。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式