展开全部
令所求数列为an
a1=2,a2=6,a3=12,a4=20,a5=30
新建一个数列bn
令bn=a(n+1)-an
b1=6-2=4
b2=12-6=6
b3=20-12=8
b4=30-20=10
我们发现bn是一个等差数列,首项为b1=4,d=2
bn=4+2(n-1)
=2n+2
an-a(n-1)=b(n-1)=2n
a(n-1)-a(n-2)=b(n-2)=2n-2
...
a2-a1=b(1)=4
统统相加得到
an-a1=2n+2(n-1)+...+4
an=2+4+...+2n=2*(1+2+...+n)=n(n+1)
a1=2,a2=6,a3=12,a4=20,a5=30
新建一个数列bn
令bn=a(n+1)-an
b1=6-2=4
b2=12-6=6
b3=20-12=8
b4=30-20=10
我们发现bn是一个等差数列,首项为b1=4,d=2
bn=4+2(n-1)
=2n+2
an-a(n-1)=b(n-1)=2n
a(n-1)-a(n-2)=b(n-2)=2n-2
...
a2-a1=b(1)=4
统统相加得到
an-a1=2n+2(n-1)+...+4
an=2+4+...+2n=2*(1+2+...+n)=n(n+1)
展开全部
2=2^-2
6=3^2-3
12=4^2-4
20=5^2-5
30=6^2-6
所以 an=(n+1)^2-(n+1) =n(n+1)
6=3^2-3
12=4^2-4
20=5^2-5
30=6^2-6
所以 an=(n+1)^2-(n+1) =n(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
An=n(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令所求数列为an
a1=2,a2=6,a3=12,a4=20,a5=30
新建一个数列bn
令bn=a(n+1)-an
b1=6-2=4
b2=12-6=6
b3=20-12=8
b4=30-20=10
我们发现bn是一个等差数列,首项为b1=4,d=2
bn=4+2(n-1)
=2n+2
an-a(n-1)=b(n-1)=2n
a(n-1)-a(n-2)=b(n-2)=2n-2
...
a2-a1=b(1)=4
统统相加得到
an-a1=2n+2(n-1)+...+4
an=2+4+...+2n=2*(1+2+...+n)=n(n+1)
多自己懂懂脑子啊
a1=2,a2=6,a3=12,a4=20,a5=30
新建一个数列bn
令bn=a(n+1)-an
b1=6-2=4
b2=12-6=6
b3=20-12=8
b4=30-20=10
我们发现bn是一个等差数列,首项为b1=4,d=2
bn=4+2(n-1)
=2n+2
an-a(n-1)=b(n-1)=2n
a(n-1)-a(n-2)=b(n-2)=2n-2
...
a2-a1=b(1)=4
统统相加得到
an-a1=2n+2(n-1)+...+4
an=2+4+...+2n=2*(1+2+...+n)=n(n+1)
多自己懂懂脑子啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2=2^2-2
6=3^2-3
12=4^2-4
20=5^2-5
30=6^2-6
所以 an=(n+1)^2-(n+1) =n(n+1)
6=3^2-3
12=4^2-4
20=5^2-5
30=6^2-6
所以 an=(n+1)^2-(n+1) =n(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询