收敛级数一定收敛,为什么
展开全部
因为当n趋向无穷时,n分之一就趋向0。即它的通项趋向0,级数收敛(n分之一是例外,它为扩散)。
收敛级数的基本性质主要有:
级数的每一项同乘一个不为零的常数后,它的收敛性不变;
两个收敛级数逐项相加或逐项相减之后仍为收敛级数;
在级数前面加上有限项,不会改变级数的收敛性;
原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;
级数收敛的必要条件为级数通项的极限为0。
扩展内容
收敛级数是柯西于1821年引进的,它是指部分和序列的极限存在的级数。收敛级数分条件收敛级数和绝对收敛级数两大类,条件收敛级数是指收敛但不绝对收敛的级数,级数本身收敛但不绝对收敛。其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。
收敛级数部分和序列的极限存在的级数,即有和的级数若干a的部分和序列。
当n->无穷时有有限的极限,则该级数称为收敛级数.收敛级数分条件收敛级数和绝对收敛级数两大类.其性质与有限和(有限项相加)相比有本质的差别。
参考资料来源搜狗百科-收敛级数
收敛级数的基本性质主要有:
级数的每一项同乘一个不为零的常数后,它的收敛性不变;
两个收敛级数逐项相加或逐项相减之后仍为收敛级数;
在级数前面加上有限项,不会改变级数的收敛性;
原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;
级数收敛的必要条件为级数通项的极限为0。
扩展内容
收敛级数是柯西于1821年引进的,它是指部分和序列的极限存在的级数。收敛级数分条件收敛级数和绝对收敛级数两大类,条件收敛级数是指收敛但不绝对收敛的级数,级数本身收敛但不绝对收敛。其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。
收敛级数部分和序列的极限存在的级数,即有和的级数若干a的部分和序列。
当n->无穷时有有限的极限,则该级数称为收敛级数.收敛级数分条件收敛级数和绝对收敛级数两大类.其性质与有限和(有限项相加)相比有本质的差别。
参考资料来源搜狗百科-收敛级数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询