
关于数列与不动点法
关于数列与不动点法,到底不动点法适用或者不适用什么样的数列?(有人说有些数列没有不动点,可我怎么看出来=。=)还有,用不动点法解数列,我看不懂别人的例题【如a(n+1)=...
关于数列与不动点法,到底不动点法适用或者不适用什么样的数列?(有人说有些数列没有不动点,可我怎么看出来=。=)还有,用不动点法解数列,我看不懂别人的例题【如a(n+1)=(a(an)+b)/(c(an)+d) 】 全是字母,我都晕了
能否给个数列的具体问题说明下解法? 展开
能否给个数列的具体问题说明下解法? 展开
展开全部
只能解这一类题,不过有的时候不一定要用不动点法,特殊的时候可以取倒数
比如a(n+1)=an/(2an+1),a1=1,an=?
取倒数1/a(n+1)=(an+1)/an=1+1/an,所以数列{1/an}是以公差为1的等差数列
1/an=1+(n-1)=n,an=1/n
可以用的情况,我随便举一个题
a(n+1)=(an+3)/(an-1),a1=1,an=?
a(n+1)+x=(an+3)/(an-1)+x=[an+3+x(an-1)]/(an-1)=[(x+1)an+(3-x)]/(an-1)
=(x+1)[an+(3-x)/(x+1)]/(an-1)
令x=(3-x)/(x+1),解得x=-3或x=1.所以
a(n+1)-3=-2(an-3)/(an-1)
a(n+1)+1=2(an+1)/(an-1)
两式相除
[a(n+1)-3]/[a(n+1)+1]=-(an-3)/(an+1)=(-1)^n(a1-3)/(a1+1)=(-1)^(n+1)
再求出a(n+1)近而得到an,这个我不算了,解法就是这样
如果刚才的那种方程有等根
那么就能构造出一个等差数列,直接求就行
比如a(n+1)=an/(2an+1),a1=1,an=?
取倒数1/a(n+1)=(an+1)/an=1+1/an,所以数列{1/an}是以公差为1的等差数列
1/an=1+(n-1)=n,an=1/n
可以用的情况,我随便举一个题
a(n+1)=(an+3)/(an-1),a1=1,an=?
a(n+1)+x=(an+3)/(an-1)+x=[an+3+x(an-1)]/(an-1)=[(x+1)an+(3-x)]/(an-1)
=(x+1)[an+(3-x)/(x+1)]/(an-1)
令x=(3-x)/(x+1),解得x=-3或x=1.所以
a(n+1)-3=-2(an-3)/(an-1)
a(n+1)+1=2(an+1)/(an-1)
两式相除
[a(n+1)-3]/[a(n+1)+1]=-(an-3)/(an+1)=(-1)^n(a1-3)/(a1+1)=(-1)^(n+1)
再求出a(n+1)近而得到an,这个我不算了,解法就是这样
如果刚才的那种方程有等根
那么就能构造出一个等差数列,直接求就行
展开全部
a(n+1)=(a(an)+b)/(c(an)+d)这种是一般情况
引入一个不动点概念:
已知函数f(x),若f(x0)=x0,则称x0为函数f(x)的不动点
而数列可看作函数的特例,所以有些数列有不动点。
需要用不动点求通项的数列,一般是分式的,就是你写的那个。
举个例子:
a(n+1)=(an+3)/(an-1)
根据不动点思想:令x=(x+3)/(x-1)
解得x1=3,x2=-1
则有数列{(an-3)/(an+1}是一个等比数列
先求出{(an-3)/(an+1}的通项公式,再求{an}的通项公式
对于一般情况:
a(n+1)=(a(an)+b)/(c(an)+d)
令x=(ax+b)/(cx+d)
一般不会无解的,就算无解也可以用复数表示
所以
①若此方程只有一个根x0:
则数列{1/(an-x0)}是一个等差数列
②若此方程有两个根x1,x2:
则数列{(an-x1)/(an-x2)}是一个等比数列
先求出所构造的数列的通项公式,再求{an}的通项公式
引入一个不动点概念:
已知函数f(x),若f(x0)=x0,则称x0为函数f(x)的不动点
而数列可看作函数的特例,所以有些数列有不动点。
需要用不动点求通项的数列,一般是分式的,就是你写的那个。
举个例子:
a(n+1)=(an+3)/(an-1)
根据不动点思想:令x=(x+3)/(x-1)
解得x1=3,x2=-1
则有数列{(an-3)/(an+1}是一个等比数列
先求出{(an-3)/(an+1}的通项公式,再求{an}的通项公式
对于一般情况:
a(n+1)=(a(an)+b)/(c(an)+d)
令x=(ax+b)/(cx+d)
一般不会无解的,就算无解也可以用复数表示
所以
①若此方程只有一个根x0:
则数列{1/(an-x0)}是一个等差数列
②若此方程有两个根x1,x2:
则数列{(an-x1)/(an-x2)}是一个等比数列
先求出所构造的数列的通项公式,再求{an}的通项公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有形如a(n+1)=f(an)的递推数列,可考虑用不动点法。
所谓不动点是指使方程f(x)=x成立的x叫函数f(x)不动点。
在上述数列中,使用不动点法如f(x)=ax+b,f(x)=(ax+b)/(cx+d)等类型。
所谓不动点是指使方程f(x)=x成立的x叫函数f(x)不动点。
在上述数列中,使用不动点法如f(x)=ax+b,f(x)=(ax+b)/(cx+d)等类型。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
此题可用不动点法,
说穿了,就是特征根法的一种形式
用特征根法可轻易解决此类题
说穿了,就是特征根法的一种形式
用特征根法可轻易解决此类题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询