高数极限和定积分问题~急~
x→0时,求limex^2-1-x^2/x^2(ex^2-1)∫sin3xsin5xdx=?X→∞时,求lim(2/∏-arctantx)^x第3个问题应该是lim[(2...
x→0时,求limex^2-1-x^2/x^2(ex^2-1)
∫sin3xsin5xdx=?
X→∞时,求lim(2/∏-arctantx)^x
第3个问题应该是lim[(2arctanx)/∏]^x 展开
∫sin3xsin5xdx=?
X→∞时,求lim(2/∏-arctantx)^x
第3个问题应该是lim[(2arctanx)/∏]^x 展开
2个回答
展开全部
1.
lim (e^x^2-1-x^2)/x^2(e^x^2-1)
=lim (e^x^2-1-x^2)/x^4 (e^x^2-1等价无穷小为x^2)
=lim 2x(e^x^2-1)/4x^3 (洛必达法则)
=lim x*x^2/2x^3 (e^x^2-1等价无穷小为x^2)
=1/2
2.
sin3xsin5x=[cos(5x-3x)-cos(5x+3x)]/2=[cos2x-cos8x]/2
∫sin3xsin5xdx=1/2∫[cos2x-cos8x]dx
=(1/2)*[sin2x/2-sin8x/8]
=sin2x/4-sin8x/16
3.
0<2/∏-arctantx<1,指数又趋于正无穷
∴lim(2/∏-arctantx)^x =0
lim (e^x^2-1-x^2)/x^2(e^x^2-1)
=lim (e^x^2-1-x^2)/x^4 (e^x^2-1等价无穷小为x^2)
=lim 2x(e^x^2-1)/4x^3 (洛必达法则)
=lim x*x^2/2x^3 (e^x^2-1等价无穷小为x^2)
=1/2
2.
sin3xsin5x=[cos(5x-3x)-cos(5x+3x)]/2=[cos2x-cos8x]/2
∫sin3xsin5xdx=1/2∫[cos2x-cos8x]dx
=(1/2)*[sin2x/2-sin8x/8]
=sin2x/4-sin8x/16
3.
0<2/∏-arctantx<1,指数又趋于正无穷
∴lim(2/∏-arctantx)^x =0
展开全部
罗比塔法则:
上下各自求导
lim(2xex^2-2x)/(2x(ex^2-1)+x^2ex^2)
=lim(2ex^2-2)/(2(ex^2-1)+xex^2)
继续求导:
=lim4xex^2/(4xex^2+2x^2ex^2)
=lim4ex^2/(4ex^2+2xex^2)
=4/(4+0)
=1
积化和差
∫sin3xsin5xdx=
∫1/2(cos2x-cos8x)dx=
1/4sin2x-1/16sin8x+c
lim(2arctanx/π)^x
=lim(1+(2arctanx-π/π))^x
=lim[(1+(2arctanx-π/π))^[1/(2arctanx-π/π))](x(2arctanx-π/π))
=e^(x(2arctanx-π/π))
limx(2arctanx-π/π)
=lim(2arctanx-π/π)/(1/x)
罗比塔法则:
上下各自求导
=lim(2/π(1+x^2))/(-1/x^2)
=lim(-2x^2/π(1+x^2))
=-2/π
所以原式=e^(-2/π)
上下各自求导
lim(2xex^2-2x)/(2x(ex^2-1)+x^2ex^2)
=lim(2ex^2-2)/(2(ex^2-1)+xex^2)
继续求导:
=lim4xex^2/(4xex^2+2x^2ex^2)
=lim4ex^2/(4ex^2+2xex^2)
=4/(4+0)
=1
积化和差
∫sin3xsin5xdx=
∫1/2(cos2x-cos8x)dx=
1/4sin2x-1/16sin8x+c
lim(2arctanx/π)^x
=lim(1+(2arctanx-π/π))^x
=lim[(1+(2arctanx-π/π))^[1/(2arctanx-π/π))](x(2arctanx-π/π))
=e^(x(2arctanx-π/π))
limx(2arctanx-π/π)
=lim(2arctanx-π/π)/(1/x)
罗比塔法则:
上下各自求导
=lim(2/π(1+x^2))/(-1/x^2)
=lim(-2x^2/π(1+x^2))
=-2/π
所以原式=e^(-2/π)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询