四边形ABCD的四个顶点在圆O上,且对角线AC垂直BD,OE垂直BC于E,求证OE=1/2AD
2009-09-28
展开全部
延长CO,交圆O于F,连接BF、DF
因为 CF是直径
所以 ∠CBF=90
所以 ∠ABC+∠ABF=90
因为 AB垂直CD
所以 ∠DCB+∠ABC=90
所以 ∠ABF=∠DCB
所以 BD弧=AF弧
所以 AD弧=BF弧
所以 AD=BF
因为 OE垂直BC
所以 E是BC中点
因为 O是CF中点
所以 OE是△CFB中位线
所以 OE=BF/2
所以 OE=AD/2
因为 CF是直径
所以 ∠CBF=90
所以 ∠ABC+∠ABF=90
因为 AB垂直CD
所以 ∠DCB+∠ABC=90
所以 ∠ABF=∠DCB
所以 BD弧=AF弧
所以 AD弧=BF弧
所以 AD=BF
因为 OE垂直BC
所以 E是BC中点
因为 O是CF中点
所以 OE是△CFB中位线
所以 OE=BF/2
所以 OE=AD/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询