
1个回答
展开全部
证明:
n=1时,a1=1
假设n=k(k为自然数,且k>1)时,
ak=2^k-1
则当n=k+1时,
a(k+1)=2ak+1=2*(2^k-1)+1=2^(k+1)-1
综上,得an=2^n-1
n=1时,a1=1
假设n=k(k为自然数,且k>1)时,
ak=2^k-1
则当n=k+1时,
a(k+1)=2ak+1=2*(2^k-1)+1=2^(k+1)-1
综上,得an=2^n-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询