在等差数列{an}中,若a10=0,则有等式
在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立.类比上述性质,相应地:在等比数列{bn}中,若b9...
在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式________成立.
展开
2个回答
展开全部
解:在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立,
故相应的在等比数列{bn}中,若b9=1,则有等式b1•b2•…•bn=b1•b2•…•b17-n(n<17)
故答案为b1•b2•…•bn=b1•b2•…•b17-n(n<17)
故相应的在等比数列{bn}中,若b9=1,则有等式b1•b2•…•bn=b1•b2•…•b17-n(n<17)
故答案为b1•b2•…•bn=b1•b2•…•b17-n(n<17)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
居然没悬赏?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询