已知向量a=(cosa,sina),b=(cosb,sinb),c=(-1,0),
1个回答
展开全部
向量a=(cosa,sina),b=(cosb,sinb),c=(-1,0),
∴向量b-c=(cosb+1,sinb)
向量b-c的最大值为:
根号下的(cosb+1)^2+sinb^2
=cosb^2+2cosb+1+sinb^2
=1+2cosb+1
=2+2cosb
又因为cosb最大值为1
∴根号下2+2cosb最大值为根号下2+2=4
即最大值为2
向量a垂直(b-c)
∴cosa*(cosb+1)+sinasinb=0
cosacosb+cosa+sinasinb=0
cos(a-b)+sina=0
解得cosb=-√2/2
∴向量b-c=(cosb+1,sinb)
向量b-c的最大值为:
根号下的(cosb+1)^2+sinb^2
=cosb^2+2cosb+1+sinb^2
=1+2cosb+1
=2+2cosb
又因为cosb最大值为1
∴根号下2+2cosb最大值为根号下2+2=4
即最大值为2
向量a垂直(b-c)
∴cosa*(cosb+1)+sinasinb=0
cosacosb+cosa+sinasinb=0
cos(a-b)+sina=0
解得cosb=-√2/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询