
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求使不等式f(x)+f(x-3)≤2成立的x的取值范...
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求使不等式f(x)+f(x-3)≤2成立的x的取值范围
展开
2个回答
展开全部
应该是这个吧 f(xy)=f(x)+f(y)
f(xy)=f(x)+f(y)
f(4)=f(2×2)=f(2)+f(2)=1+1=2
f(x)+f(x-3)≤2
f(x (x-3))≤2=f(4)
又f(x)是在定义(0,+∞)上的单调递增函数
x>0
且x-3>0
且0<x (x-3) ≤4
x的取值范围(3,4]
f(xy)=f(x)+f(y)
f(4)=f(2×2)=f(2)+f(2)=1+1=2
f(x)+f(x-3)≤2
f(x (x-3))≤2=f(4)
又f(x)是在定义(0,+∞)上的单调递增函数
x>0
且x-3>0
且0<x (x-3) ≤4
x的取值范围(3,4]
参考资料: http://zhidao.baidu.com/question/112214247.html?fr=relateQuestion
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询