4个回答
展开全部
证明:
∵∠ACB=90°,CD⊥AB
∴∠ACD+∠BCD=∠BCD+∠B=90°
∵∠ACD=∠B
∵DE是Rt△BCD斜边的中线
∴ED=EB
∴∠B=∠BDE
∴∠ADF=∠BDE=∠B=∠ACD
∵∠F =∠F
∴△FAD ∽△FDC
∴DF/CF=AD/CD
易证△ACD∽△ABC
∴AD/CDAC/BC
∴AC/BC=DF/CF
∵∠ACB=90°,CD⊥AB
∴∠ACD+∠BCD=∠BCD+∠B=90°
∵∠ACD=∠B
∵DE是Rt△BCD斜边的中线
∴ED=EB
∴∠B=∠BDE
∴∠ADF=∠BDE=∠B=∠ACD
∵∠F =∠F
∴△FAD ∽△FDC
∴DF/CF=AD/CD
易证△ACD∽△ABC
∴AD/CDAC/BC
∴AC/BC=DF/CF
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
自己查查相似三角形的定理吧!我才上初二呢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
要证明的东东没有写清楚
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询