线性即两个变量之间存在一次方函数关系,就称它们之间存在线性关系。正比例关系是线性关系中的特例,反比例关系不是线性关系。
线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。
扩展资料
形为 ax+by+...+cz+d=0 ,关于x、y的线性方程,是指经过整理后能变形为ax+by+c=0的方程(其中a、b、c为已知数,a、b不同时为0)。一元线性方程是最简单的方程,其形式为ax=b。因为把一次方程在坐标系中表示出来的图形是一条直线,故称其为线性方程。
线性化关系
在例子中(不是特例)变量y是x的函数,而且函数和方程的图像一致。
通常线性方程在实际应用中写作:
y=f(x)
这里f有如下特性:
f(x+y)=f(x)+f(y)
f(ax)=af(x)
这里a不是向量。
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫线性化。
因为线性的独特属性,在同类方程中对线性函数的解决有叠加作用。这使得线性方程最容易解决和推演。
线性方程在应用数学中有重要规律。使用它们建立模型很容易,而且在某些情况下可以假设变量的变动非常小,这样许多非线性方程就转化为线性方程。
参考资料来源:百度百科-线性方程
线性就是一条线,这只是它的一个名字,名字可以没有更多含义的,只是人用来区别各种事物的一个标志,比如y=x,在平面直角坐标系上就是一条线,它的值是...,-2,-1,0,1,2,....
下面的解释引自:网页链接
线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。
因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
线性方程组
linear equations,system of
各个方程关于未知量均为一次的方程组。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。
xj表未知量,aij称系数,bi称常数项。
称为系数矩阵和增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…, cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解秩(A)=秩;若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。
线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。
参考资料: 百度百科
2017-08-13 · 知道合伙人教育行家
所以,在数学中,凡是一次的,往往都叫线性。如线性方程、线性规划、线性代数、线性变换、线性空间等。
所谓线性方程,其实就是一次方程。如 x1+2x2-x3 = 1 (三元一次方程)。
在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
广告 您可能关注的内容 |