大学物理相对论问题
如下三个问题关于狭义相对论的高分求解求较详细解释利用洛伦兹定理求解一、某物体在0.6倍光速下观察100米跑道,跑道是多少米?二、某人跑100米用时10秒,在0.6倍光速运...
如下三个问题 关于狭义相对论的 高分求解 求较详细解释 利用洛伦兹定理求解
一、某物体在0.6倍光速下观察100米跑道,跑道是多少米?
二、某人跑100米用时10秒,在0.6倍光速运动的某物体上观察该人,其运动了多少距离(同向)
三、某人的10秒在0.6倍光速运动的某物体上,时间是多少时间?
希望高手能给一些解释的过程 所用的公式 展开
一、某物体在0.6倍光速下观察100米跑道,跑道是多少米?
二、某人跑100米用时10秒,在0.6倍光速运动的某物体上观察该人,其运动了多少距离(同向)
三、某人的10秒在0.6倍光速运动的某物体上,时间是多少时间?
希望高手能给一些解释的过程 所用的公式 展开
4个回答
展开全部
一明返卖、没撇世改的在惯性系中测量,有撇的在非惯性系(激逗运动的)中测量.x表示坐标,L表示长度
L=x(2)-(1);L'=x'(2)-L'(1)
x'(1)=[x(1)-ut]/√(1-u^2/c^2),
x'(2)=[x(2)-ut]/√(1-u^2/c^2),
于是
L'=x'(2)-x'(1)
=[x(2)-ut]/√(1-u^2/c^2)-[x(1)-ut]/√(1-u^2/c^2)
=[x(2)-x(1)]/√(1-u^2/c^2)
=L/√(1-u^2/c^2),
即 L=L'*√(1-u^2/c^2),
100=L'*√[1-(0.6c)^2/c^2]
L'=100/0.8=125(米)
二、既然刚好跑了完了整个100米跑道,那他跑的距离当然跟第一题一样,是125米。
三、t'=(t-ux/c^2)/√(1-u^2/c^2)
Δt'=t'(2)-t'(1)
=[t(2)-ux/c^2]/√(1-u^2/c^2)-[t(1)-ux/c^2]/√(1-u^2/c^2)
=Δt/√(1-u^2/c^2)
若在速度为0.6c的物体上经过了10s
则在惯性系中表现的时间Δt’=10/√[1-(0.6c)^2/c^2]=12.5(秒)
L=x(2)-(1);L'=x'(2)-L'(1)
x'(1)=[x(1)-ut]/√(1-u^2/c^2),
x'(2)=[x(2)-ut]/√(1-u^2/c^2),
于是
L'=x'(2)-x'(1)
=[x(2)-ut]/√(1-u^2/c^2)-[x(1)-ut]/√(1-u^2/c^2)
=[x(2)-x(1)]/√(1-u^2/c^2)
=L/√(1-u^2/c^2),
即 L=L'*√(1-u^2/c^2),
100=L'*√[1-(0.6c)^2/c^2]
L'=100/0.8=125(米)
二、既然刚好跑了完了整个100米跑道,那他跑的距离当然跟第一题一样,是125米。
三、t'=(t-ux/c^2)/√(1-u^2/c^2)
Δt'=t'(2)-t'(1)
=[t(2)-ux/c^2]/√(1-u^2/c^2)-[t(1)-ux/c^2]/√(1-u^2/c^2)
=Δt/√(1-u^2/c^2)
若在速度为0.6c的物体上经过了10s
则在惯性系中表现的时间Δt’=10/√[1-(0.6c)^2/c^2]=12.5(秒)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询