求解微分方程!急!!!!!在线等答案!!!!
(y')^2=y^4-y^2要有详细过程,谢谢!答案是y(x)=1/sin(∏/6±x),只求过程。恒为0的不算,其实是通解啦y(x)=C/sin(∏/6±x),C为常数...
(y')^2 = y^4 - y^2
要有详细过程,谢谢!
答案是y(x) = 1/sin(∏/6±x),只求过程。
恒为0的不算 ,其实是通解啦y(x) = C/sin(∏/6±x),C为常数 展开
要有详细过程,谢谢!
答案是y(x) = 1/sin(∏/6±x),只求过程。
恒为0的不算 ,其实是通解啦y(x) = C/sin(∏/6±x),C为常数 展开
5个回答
展开全部
(y')^2 = y^4 - y^2
所以y'=y根号(y^2-1) (不考虑符号了)
所以dy/y根号(y^2-1)=dx
所以【dy/(y根号(y^2-1))=x+C1(这里【表示不定积分符号)
令y=sect,下面计算【dy/(y根号(y^2-1))
则【dy/(y根号(y^2-1))=【(sect*tgt)/(sect*tgt) dt=t+C2=arcsecy+C2
所以arcsecy+C2=x+C1
所以arcsecy=x+C(合并任意常数项)
所以y=sec(x+C)=1/cos(x+C),由于C是任意常数,所以可以将cos化为sin
所以y'=y根号(y^2-1) (不考虑符号了)
所以dy/y根号(y^2-1)=dx
所以【dy/(y根号(y^2-1))=x+C1(这里【表示不定积分符号)
令y=sect,下面计算【dy/(y根号(y^2-1))
则【dy/(y根号(y^2-1))=【(sect*tgt)/(sect*tgt) dt=t+C2=arcsecy+C2
所以arcsecy+C2=x+C1
所以arcsecy=x+C(合并任意常数项)
所以y=sec(x+C)=1/cos(x+C),由于C是任意常数,所以可以将cos化为sin
展开全部
设:y(x) = 1/sin([π/6]±x)
证明:
y'(x)={-1/sin²([π/6]±x)}*cos([π/6]±x)(±1)
(y'(x))²=({1/sin([π/6]±x)}^4)*cos²([π/6]±x) ----(1)
(y(x))^4 = 1/(sin([π/6]±x))^4 ----(2)
(y(x))² = 1/sin²([π/6]±x) ----(3)
(2)-(3) -->
{1/(sin([π/6]±x))^4}-{1/sin²([π/6]±x)}
=(1-sin²([π/6]±x))/(sin([π/6]±x))^4
=cos²([π/6]±x))/(sin([π/6]±x))^4 -----(4)
We see that (1)=(4). 证毕!
证明:
y'(x)={-1/sin²([π/6]±x)}*cos([π/6]±x)(±1)
(y'(x))²=({1/sin([π/6]±x)}^4)*cos²([π/6]±x) ----(1)
(y(x))^4 = 1/(sin([π/6]±x))^4 ----(2)
(y(x))² = 1/sin²([π/6]±x) ----(3)
(2)-(3) -->
{1/(sin([π/6]±x))^4}-{1/sin²([π/6]±x)}
=(1-sin²([π/6]±x))/(sin([π/6]±x))^4
=cos²([π/6]±x))/(sin([π/6]±x))^4 -----(4)
We see that (1)=(4). 证毕!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
开方一下,试试。我看行,但是要注意符号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x 哪里来的。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询