9个回答
推荐于2017-09-03
展开全部
很显然你还不懂的遍历一棵二叉树的原理
当你拿到一棵二叉树,无论它的形状如何的千奇百怪
我们都可以将它按照如下的方式划分
根
/ \
左子树 右子树
一棵有很多个节点的二叉树可以划分为以上的形式
也可以这么理解,只要是按以上形式组合的都可以称为是二叉树
一个仅仅只有根节点的二叉树也可以划分成以上的形式,只不过他的左右子树都为空罢了
所以,我们发现,二叉树的定义其实是一个递归定义的过程
大的二叉树是由小的二叉树构建而成的
所以,当我们考虑要遍历一棵二叉树时
也是首选递归的遍历
遍历二叉树
它的基本思想是先按照上面的形式把整棵二叉树划分为3部分
哪么接下来的工作就很简单了
我们只需要将这3部分都遍历一遍就可以了(这里用到了分而治之的思想)
而对于这3部分来说
根节点的遍历无疑是最方便的,直接访问就ok了
而对于左右子树呢?
我们不难发现,左右子树其实分别成为了两棵完整的树
他们拥有各自独立的根节点,左子树和右子树
对他们的遍历,很显然应该与刚才的遍历方法一致便可
(如果上面的都理解了,那么这个题就是小菜一碟了,如果觉得无法理解,可以按照下面的方法自己多分解几棵树)
对于这个题目,中序遍历这可二叉树
先看根节点
1
/ \
左子树 右子树
我们应该先遍历左子树
也就是下面这棵树
2
/ \
4 5
对于这棵树在进行中序遍历
我们应先遍历她的左子树
他只有一个根节点4,左右子树都为空
哪么遍历这个只有一个根节点的二叉树
先访问她的左子树,为空
返回
访问该树的根节点4
在访问右子树也为空
此时,这棵树已经被完全的遍历了
我们需要返回上一层也就是
2
/ \
4 5
这棵树
此时,她的左子树已经被访问完毕
根据中序遍历的规则
需要访问此树的根节点2
此时的访问顺序是4-2
访问了根节点
在访问右子树只有一个根节点的5(具体过程看4的访问)
5访问完毕
也就意味着
2
/ \
4 5
这棵树已经访问完了
需要返回上一层
也就是1为根的树
此时这棵树的左子树已经访问完毕
此时访问的顺序是4-2-5应该没有问题
接下来访问根节点1
在访问右子树
3
/ \
4 7
是不是觉得似曾相识???
她的访问应该跟
2
/ \
4 5
一致
哪么最终遍历的顺序也出来了
4-2-5-1-6-3-7
-----------------------------
花了10多分钟
希望对你有所帮助
顺便自己也复习下
呵呵
当你拿到一棵二叉树,无论它的形状如何的千奇百怪
我们都可以将它按照如下的方式划分
根
/ \
左子树 右子树
一棵有很多个节点的二叉树可以划分为以上的形式
也可以这么理解,只要是按以上形式组合的都可以称为是二叉树
一个仅仅只有根节点的二叉树也可以划分成以上的形式,只不过他的左右子树都为空罢了
所以,我们发现,二叉树的定义其实是一个递归定义的过程
大的二叉树是由小的二叉树构建而成的
所以,当我们考虑要遍历一棵二叉树时
也是首选递归的遍历
遍历二叉树
它的基本思想是先按照上面的形式把整棵二叉树划分为3部分
哪么接下来的工作就很简单了
我们只需要将这3部分都遍历一遍就可以了(这里用到了分而治之的思想)
而对于这3部分来说
根节点的遍历无疑是最方便的,直接访问就ok了
而对于左右子树呢?
我们不难发现,左右子树其实分别成为了两棵完整的树
他们拥有各自独立的根节点,左子树和右子树
对他们的遍历,很显然应该与刚才的遍历方法一致便可
(如果上面的都理解了,那么这个题就是小菜一碟了,如果觉得无法理解,可以按照下面的方法自己多分解几棵树)
对于这个题目,中序遍历这可二叉树
先看根节点
1
/ \
左子树 右子树
我们应该先遍历左子树
也就是下面这棵树
2
/ \
4 5
对于这棵树在进行中序遍历
我们应先遍历她的左子树
他只有一个根节点4,左右子树都为空
哪么遍历这个只有一个根节点的二叉树
先访问她的左子树,为空
返回
访问该树的根节点4
在访问右子树也为空
此时,这棵树已经被完全的遍历了
我们需要返回上一层也就是
2
/ \
4 5
这棵树
此时,她的左子树已经被访问完毕
根据中序遍历的规则
需要访问此树的根节点2
此时的访问顺序是4-2
访问了根节点
在访问右子树只有一个根节点的5(具体过程看4的访问)
5访问完毕
也就意味着
2
/ \
4 5
这棵树已经访问完了
需要返回上一层
也就是1为根的树
此时这棵树的左子树已经访问完毕
此时访问的顺序是4-2-5应该没有问题
接下来访问根节点1
在访问右子树
3
/ \
4 7
是不是觉得似曾相识???
她的访问应该跟
2
/ \
4 5
一致
哪么最终遍历的顺序也出来了
4-2-5-1-6-3-7
-----------------------------
花了10多分钟
希望对你有所帮助
顺便自己也复习下
呵呵
展开全部
遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。由于二叉树是非线性结构,因此,树的遍历实质上是将二叉树的各个结点转换成为一个线性序列来表示。
设L、D、R分别表示遍历左子树、访问根结点和遍历右子树, 则对一棵二叉树的遍历有三种情况:DLR(称为先根次序遍历),LDR(称为中根次序遍历),LRD (称为后根次序遍历)。
1、先根遍历。
首先访问根,再先序遍历左(右)子树,最后先序遍历右(左)子树,C语言代码如下:
voidXXBL(tree*root){
//DoSomethingwithroot
if(root->lchild!=NULL)
XXBL(root->lchild);
if(root->rchild!=NULL)
XXBL(root->rchild);
}
2、中根遍历
首先中序遍历左(右)子树,再访问根,最后中序遍历右(左)子树,C语言代码如下
voidZXBL(tree*root)
{
if(root->lchild!=NULL)
ZXBL(root->lchild);//DoSomethingwithroot
if(root->rchild!=NULL)
ZXBL(root->rchild);
}
3、后根遍历
首先后序遍历左(右)子树,再后序遍历右(左)子树,最后访问根,C语言代码如下
voidHXBL(tree*root){
if(root->lchild!=NULL)
HXBL(root->lchild);
if(root->rchild!=NULL)
HXBL(root->rchild);//DoSomethingwithroot
设L、D、R分别表示遍历左子树、访问根结点和遍历右子树, 则对一棵二叉树的遍历有三种情况:DLR(称为先根次序遍历),LDR(称为中根次序遍历),LRD (称为后根次序遍历)。
1、先根遍历。
首先访问根,再先序遍历左(右)子树,最后先序遍历右(左)子树,C语言代码如下:
voidXXBL(tree*root){
//DoSomethingwithroot
if(root->lchild!=NULL)
XXBL(root->lchild);
if(root->rchild!=NULL)
XXBL(root->rchild);
}
2、中根遍历
首先中序遍历左(右)子树,再访问根,最后中序遍历右(左)子树,C语言代码如下
voidZXBL(tree*root)
{
if(root->lchild!=NULL)
ZXBL(root->lchild);//DoSomethingwithroot
if(root->rchild!=NULL)
ZXBL(root->rchild);
}
3、后根遍历
首先后序遍历左(右)子树,再后序遍历右(左)子树,最后访问根,C语言代码如下
voidHXBL(tree*root){
if(root->lchild!=NULL)
HXBL(root->lchild);
if(root->rchild!=NULL)
HXBL(root->rchild);//DoSomethingwithroot
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二叉树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。满二叉树,完全二叉树,排序二叉树。
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二叉树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。满二叉树,完全二叉树,排序二叉树。
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二叉树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。满二叉树,完全二叉树,排序二叉树。
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
后序遍历是二叉树遍历的一种。后序遍历指在访问根结点、遍历左子树与遍历右子树三者中,首先遍历左子树,然后遍历右子树,最后遍历访问根结点,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后遍历根结点。后序遍历有递归算法和非递归算法两种。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询