在△ABC中,请证明:设D为BC上一点,连接AD,若S△ABD/S△ACD=AB/AC,则AD为角平分线。

shplwxsj
2009-10-15 · TA获得超过347个赞
知道答主
回答量:112
采纳率:0%
帮助的人:76.2万
展开全部
过D作DE、DF分别垂直于AB、AC
S△ABD=1/2*AB*DE
S△ACD=1/2*AC*DF
因为S△ABD/S△ACD=AB/AC
所以DE=DF
所以AD为角A的平分线。
chengguizheng
2009-10-15 · TA获得超过3907个赞
知道小有建树答主
回答量:845
采纳率:0%
帮助的人:1006万
展开全部
证明:过D点作ED垂直于AB,DF垂直于AC,交于E,F。
因为 S△ABD/S△ACD=AB*DE/AC*DF
又有 S△ABD/S△ACD=AB/AC
所以 DE=DF
所以 AD为角平分线
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式