质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
扩展资料:
一、质数性质
1、质数p的约数只有两个:1和p。
2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
3、质数的个数是无限的。
4、质数的个数公式π(n)是不减函数。
5、若n为正整数,在n²到(n+1)²之间至少有一个质数。
二、合数性质
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。
参考资料来源:百度百科-质数
参考资料来源:百度百科-合数
质数:质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。
合数:指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
合数的性质:
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
7、对任一大于5的合数(威尔逊定理):
扩展资料:
应用:
质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。
多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。
参考链接:
一个数,如果只有1和它本身两个因数,这样的数叫做质数,又称素数。例如(10以内) 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数,合数是除了1和它本身还能被其他的整数整除的自然数.
只有1和它本身这两个因数的自然数叫做质数。还可以说成质数只有1和它本身两个约数。2.素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个正整数的乘积 合数的概念
合数是除了1和它本身还能被其他的整数整除的自然数.
除0,2之外的偶数都是合数
合数又名合成数,是满足以下任一(等价)条件的正整数:
1.是两个大于1 的整数之乘积;
2.拥有某大于1 而小于自身的因数(因子);
3.拥有至少三个因数(因子);
4.不是1 也不是素数(质数);
5.有至少一个素因子的非素数.示为任何其它两个正整数的乘积。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
扩展资料:
一、质数性质
1、质数p的约数只有两个:1和p。
2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
3、质数的个数是无限的。
4、质数的个数公式π(n)是不减函数。
5、若n为正整数,在n²到(n+1)²之间至少有一个质数。
二、合数性质
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。
参考资料来源:百度百科-质数
参考资料来源:百度百科-合数