什么叫十字相乘法?
展开全部
有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法.
1×1=1(二次项系数)
ab=ab(常数项)
1×a+1×b=a+b(一次项系数)
要把二次项系数不为1的二次三项式
只要把分解因式时:如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.
如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同.
对于分解的两个因数,还要看它们的和是不是等于一次项的系数p.
1×1=1(二次项系数)
ab=ab(常数项)
1×a+1×b=a+b(一次项系数)
要把二次项系数不为1的二次三项式
只要把分解因式时:如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.
如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同.
对于分解的两个因数,还要看它们的和是不是等于一次项的系数p.
2009-10-22
展开全部
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A 的个体与取值为B 的个体的比例。假设A 占整体的X,则B为(1-X)。
AX+B(1-X)=C
X=(C-B)/(A-B),1-X=(A-C)/(A-B),即X:(1-X)=(C-B):( A-C)
上面的计算过程可以抽象为:
A |C-B
C
B |A-C
这就是十字相乘法。
十字相乘法使用时要注意几点:
第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
AX+B(1-X)=C
X=(C-B)/(A-B),1-X=(A-C)/(A-B),即X:(1-X)=(C-B):( A-C)
上面的计算过程可以抽象为:
A |C-B
C
B |A-C
这就是十字相乘法。
十字相乘法使用时要注意几点:
第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
参考资料: http://www.sina.com.cn
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
⒈十字相乘法概念
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因式分解的一种方法,实用如下:
x^2+5*x+6做因式分解
x
\/
a
x
/\
b
要使a+b=5
a*b=6
得到的就是ab中一个等于2一个等于3
x
\/
2
x
/\
3
写成横向式子就是
(x+2)(x+3)
x^2+5*x+6做因式分解
x
\/
a
x
/\
b
要使a+b=5
a*b=6
得到的就是ab中一个等于2一个等于3
x
\/
2
x
/\
3
写成横向式子就是
(x+2)(x+3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询