模,又称为范数。范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
范数常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。
扩展资料:
矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性: 。所以矩阵范数通常也称为相容范数。
如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。
注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。
参考资料:百度百科- 范数
矩阵的模也是矩阵的范数,简单来说就是矩阵中每个元素的平方和再开方。
矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广的平方和再开方。
扩展资料:
矩阵的应用:
1、图像处理:
在图像处理中图像的仿射变换一般可以表示为一个仿射矩阵和一张原始图像相乘的形式
2、线性变换及对称:
线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。
还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。
3、量子态的线性组合:
1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。这种做法在矩阵力学中也能见到。例如密度矩阵就是用来刻画量子系统中“纯”量子态的线性组合表示的“混合”量子态 。
另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。这种碰撞可以解释为结果粒子状态和入射粒子状态线性组合的标量积。
其中的线性组合可以表达为一个矩阵,称为S矩阵,其中记录了所有可能的粒子间相互作用 。
4、简正模式:
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加 。描述力学振动或电路振荡时,也需要使用简正模式求解 。
5、几何光学:
在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。采用近轴近似(英语:paraxial approximation),假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。
这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面(英语:principal plane)的垂直距离)。这矩阵称为光线传输矩阵(英语:ray transfer matrix),内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。
折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。
由一系列透镜或反射元件组成的光学系统,可以很简单地以对应的矩阵组合来描述其光线传播路径 。
6、电子学:
在电子学里,传统的网目分析(英语:mesh analysis)或节点分析会获得一个线性方程组,这可以以矩阵来表示与计算。
一些特殊矩阵如下:
1、对称矩阵
在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等 。.
2、Hermitian矩阵
一个正方的复值矩阵称为Hermitian矩阵,若A=AH即其元素 ,换言之Hermitian矩阵是一种复共轭对称矩阵 。
对一个实值矩阵,Hermitian矩阵与对称矩阵等价。
3、正交矩阵
一个实的正方矩阵称为正交矩阵。
4、带型矩阵
若矩阵满足条件aij=0,|i-j|>k,则矩阵A可以称为带型矩阵(banded matrix)。
5、三角矩阵
在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。
6、相似矩阵
在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。
7、Vandermonde矩阵
Vandermonde矩阵(范德蒙矩阵)的命名来自Alexandre-Théophile Vandermonde的名字,范德蒙矩阵是一个各列呈现出几何级数关系的矩阵 。
8、Hadamard矩阵
Hadamard矩阵(阿达马矩阵)是一个方阵,每个元素都是 +1 或 −1,每行都是互相正交的 、。
9、分块矩阵
一个分块矩阵是将矩阵分割出较小的矩阵,这些较小的矩阵就称为子块 。
10、 Jacobian矩阵
Jacobian矩阵是函数的一阶偏导数以一定方式排列成的矩阵。
11、旋转矩阵(Rotation matrix)
旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。
旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。
如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。
旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。它们解决的是如何组合集合中的元素以达到某种特定的要求。
参考资料:
在数学中,矩阵(Matrix)是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
http://baike.baidu.com/view/637132.htm
如果你看到的记号是|A|,那么这个经常用来表示A的行列式det(A),有时也用来表示A的所有元素取模得到的矩阵。