证明实数的连续性 5
我是大一数学系的,这是我们数学分析第一节课的例题之一,听不懂请高人再给讲讲,符号不好表达,扫描的图片发给也好。...
我是大一数学系的,这是我们数学分析第一节课的例题之一,听不懂请高人再给讲讲,符号不好表达,扫描的图片发给也好。
展开
展开全部
若实数不连续,则存在a、b是相邻的两个实数,则(a+b)/2也为实数,但它介于a、b之间,所以a、b不相邻。故实数连续。
若有理数不连续,则存在a、b是相邻的两个有理数,则(a+b)/2也为有理数,但它介于a、b之间,所以a、b不相邻。故有理数连续。
那为什么说有理数不连续?
--------------------------------------------------------
实数系的基本定理——实数系的连续性,有多种表达方式:Dedkind 切割定理,确界存在定理,单调有界数列收敛定理,闭区间套定理,Bolzano-Weierstrass 定理,Cauchy 收敛原理和Cantor定理。这些定理是等价的,其中每一个都可以作为极限论的出发点,建立起整个极限理论。
确界定理:在实数系R内,非空的有上(下)界的数集必有上(下)确界存在。
有理数集合0<x^2<2中,无上确界,所以有理数不连续。
若有理数不连续,则存在a、b是相邻的两个有理数,则(a+b)/2也为有理数,但它介于a、b之间,所以a、b不相邻。故有理数连续。
那为什么说有理数不连续?
--------------------------------------------------------
实数系的基本定理——实数系的连续性,有多种表达方式:Dedkind 切割定理,确界存在定理,单调有界数列收敛定理,闭区间套定理,Bolzano-Weierstrass 定理,Cauchy 收敛原理和Cantor定理。这些定理是等价的,其中每一个都可以作为极限论的出发点,建立起整个极限理论。
确界定理:在实数系R内,非空的有上(下)界的数集必有上(下)确界存在。
有理数集合0<x^2<2中,无上确界,所以有理数不连续。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用Dedkind切割证明的这个比较好理解,建议去看看吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询