若a,b均为正实数,x,y∈R,且a+b=1,求证:ax^2+by^2>=(ax+by)^2

and狗a1e2997
2009-10-24 · TA获得超过8810个赞
知道大有可为答主
回答量:1405
采纳率:0%
帮助的人:1669万
展开全部
因为a+b=1,所以1-b=a,1-a=b,所以
ax²+by²-(ax+by)²
= ax²+by²-a²x²-b²y²-2abxy
= (a-a²)x²+(b-b²)y²-2abxy
=a (1-a)x²+b(1-b)y²-2abxy
=abx²+aby²-2abxy
=ab(x²+y²-2xy)
=ab(x-y)²
因为a、b均为正实数,所以上式恒为非负。当x=y时可以取到0,所以ab(x-y)² ≥0,即
ax²+by²-(ax+by)² ≥0,所以
ax²+by²≥(ax+by)²
370116
高赞答主

2009-10-24 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
因为b=1-a,所以
ax^2+(1-a)y^2-(ax+(1-a)y)^2
=ax^2+(1-a)y^2-a^2x^2-2a(1-a)xy-(1-a)^2y^2
=ax^2-a^2x^2-2axy+2a^2xy+ay^2-a^2y^2
=-(a^2x^2-2a^2xy+a^2y^2)+(ax^2-2axy+ay^2)
=(x-y)^2(a-a^2)
因为0<a<1,所以上式恒非正。只有当x=y时可以取到等号。

(分析法)
证明:
ax^2+by^2≥(ax+by)^2
====>ax^2+by^2≥a^2x^2+b^2y^2+2abxy
====>ax^2-a^2x^2+by^2-b^2y^2≥2abxy
====>a(1-a)x^2+b(1-b)y^2≥2abxy 由 a+b=1 则
原式==abx^2+aby^2≥2abxy
====> x^2+y^2≥2xy
所以,
ax^2+by^2≥(ax+by)^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
caoyurun
2009-10-25
知道答主
回答量:9
采纳率:0%
帮助的人:9.1万
展开全部
ax^2+(1-a)y^2-(ax+(1-a)y)^2
=ax^2+(1-a)y^2-a^2x^2-2a(1-a)xy-(1-a)^2y^2
=ax^2-a^2x^2-2axy+2a^2xy+ay^2-a^2y^2
=-(a^2x^2-2a^2xy+a^2y^2)+(ax^2-2axy+ay^2)
=(x-y)^2(a-a^2)
因为0<a<1,所以上式恒非正。只有当x=y时可以取到等号。
=-(a^2x^2-2a^2xy+a^2y^2)+(ax^2-2axy+ay^2)这里时只有当x=y时可以取到等号。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
半分笑bS
2009-10-25
知道答主
回答量:30
采纳率:0%
帮助的人:44.2万
展开全部
x,y∈R
(x-y)2≥0
ab(x2+y2-2xy)≥0
1-a=b,1-b=a
abx2+bay2-2abxy≥0
a(1-a)x2+b(1-b)y2-2abxy≥0
(ax2-a2x2)+(by2-b2y2)-2abxy≥0
ax2+by2-(a2x2+2abxy+b2y2)≥0
ax2+by2-(ax+by)2≥0
ax2+by2≥(ax+by)2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式