展开全部
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先证三角形的另一个面积公式
S=(ab*SinC)/2(作高再用S=ab/2即可证明)..........(1)
再证余弦定理
c^2=a^2+b^2-2ab*CosC............................(2)
根据公式
(SinC)^2+(CosC)^2=1...........................(3)
由(2),(3)把SinC用a,b,c表示出来再代入(1)即可得出秦九韶--海伦公式
S=(ab*SinC)/2(作高再用S=ab/2即可证明)..........(1)
再证余弦定理
c^2=a^2+b^2-2ab*CosC............................(2)
根据公式
(SinC)^2+(CosC)^2=1...........................(3)
由(2),(3)把SinC用a,b,c表示出来再代入(1)即可得出秦九韶--海伦公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:海伦公式:若ΔABC的三边长为a.b.c.则
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形.[负号[-"从a左则向右经过a.b.c".负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单.还设个什么l=(a+b=c)/2啊.多此一举!)
证明:设边c上的高为
h.则有
√(a^2-h^2)+√(b^2-h^2)=c
√(a^2-h^2)=c-√(b^2-h^2)
两边平方.化简得:
2c√(b^2-h^2)=b^2+c^2-a^2
两边平方.化简得:
h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))
SΔABC=ch/2
=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2
仔细化简一下.得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
用三角函数证明!
证明:
SΔABC=absinC/2
=ab√(1-(cosC)^2)/2----(1)
∵cosC=(a^2+b^2-c^2)/(2ab)
∴代入(1)式.(仔细)化简得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形.[负号[-"从a左则向右经过a.b.c".负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单.还设个什么l=(a+b=c)/2啊.多此一举!)
证明:设边c上的高为
h.则有
√(a^2-h^2)+√(b^2-h^2)=c
√(a^2-h^2)=c-√(b^2-h^2)
两边平方.化简得:
2c√(b^2-h^2)=b^2+c^2-a^2
两边平方.化简得:
h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))
SΔABC=ch/2
=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2
仔细化简一下.得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
用三角函数证明!
证明:
SΔABC=absinC/2
=ab√(1-(cosC)^2)/2----(1)
∵cosC=(a^2+b^2-c^2)/(2ab)
∴代入(1)式.(仔细)化简得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |