高一数学2道基本不等式及其应用的题目

已知x,y∈R+,m,n∈R,且m^2n^2>x^2m^2+y^2n^2,比较√m^2+n^2与x+y的大小关系若a>0,b>0,且√a+√b<=m√a+b恒成立,求实数... 已知x,y∈R+,m,n∈R,且m^2n^2>x^2m^2+y^2n^2,比较√m^2+n^2与x+y的大小关系

若a>0,b>0,且√a+√b<=m√a+b恒成立,求实数m的最小值

要过程 很急 谢谢
展开
泥中马
2009-10-29 · TA获得超过153个赞
知道小有建树答主
回答量:72
采纳率:0%
帮助的人:130万
展开全部
这个…………
1、令m=Rcosθ,n=Rsinθ,则√m^2+n^2=R,而由已知有:R^4sin^2θcos^2θ>R^2x^2cos^2θ+R^2y^2sin^2θ,即R^2>x^2/sin^2θ+y^2/cos^2θ≥(x+y)^2/(cos^2θ+sin^2θ)=(x+y)^2,所以√m^2+n^2>x+y。
注:x^2/sin^2θ+y^2/cos^2θ≥(x+y)^2/(cos^2θ+sin^2θ)的由来。其实这是一个更为广泛的不等式权方和不等式的特例,我们在这证明x^2/a+y^2/b≥(x+y)^2/(a+b),由柯西不等式得(a+b)*(x^2/a+y^2/b)≥(x+y)^2,除过来就是x^2/a+y^2/b≥(x+y)^2/(a+b),这个式子也可以用平均值不等式来证明,取a=cosθ,b=sinθ,就是x^2/sin^2θ+y^2/cos^2θ≥(x+y)^2/(cos^2θ+sin^2θ)了。

2、(√a+√b)^2=a+b+2√ab,由于a+b≥2√ab,所以(√a+√b)^2=a+b+2√ab≤2(a+b),√a+√b≤√2*√a+b,m=√2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式