天文望远镜的各部位名称,和用途。

天文望远镜的各部位名称,和用途/用法。最好是开普勒式折射天文望远镜,最好有图!现在急需要,麻烦了!谢谢谢谢谢!... 天文望远镜的各部位名称,和用途/用法。最好是开普勒式折射天文望远镜,最好有图!现在急需要,麻烦了!谢谢谢谢谢! 展开
4852034
2009-11-10 · TA获得超过726个赞
知道小有建树答主
回答量:144
采纳率:0%
帮助的人:130万
展开全部
天文望远镜目录[隐藏]

概况
折射式望远镜
折反射式望远镜
现代大型光学望远镜
射电望远镜
空间望远镜
其它波段的望远镜
望远镜的表示方法

[编辑本段]概况

Astronomical Telescope
天文望远镜是观测天体的重要手段,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
[编辑本段]折射式望远镜
1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。
折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。
[编辑本段]折反射式望远镜
折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。
1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。
由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。
[编辑本段]现代大型光学望远镜
望远镜的集光能力随着口径的增大而增强,望远镜的集光能力越强,就能够看到更暗更远的天体,这其实就是能够看到了更早期的宇宙。天体物理的发展需要更大口径的望远镜。
但是,随着望远镜口径的增大,一系列的技术问题接踵而来。海尔望远镜的镜头自重达14.5吨,可动部分的重量为530吨,而6米镜更是重达800吨。望远镜的自重引起的镜头变形相当可观,温度的不均匀使镜面产生畸变也影响了成象质量。从制造方面看,传统方法制造望远镜的费用几乎与口径的平方或立方成正比,所以制造更大口径的望远镜必须另辟新径。
自七十年代以来,在望远镜的制造方面发展了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域。这些技术使望远镜的制造突破了镜面口径的局限,并且降低造价和简化望远镜结构。特别是主动光学技术的出现和应用,使望远镜的设计思想有了一个飞跃。
从八十年代开始,国际上掀起了制造新一代大型望远镜的热潮。其中,欧洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主镜采用了薄镜面;美国的KeckI、KeckII和HET望远镜的主镜采用了拼接技术。
优秀的传统望远镜卡塞格林焦点在最好的工作状态下,可以将80%的几何光能集中在0〃.6范围内,而采用新技术制造的新一代大型望远镜可保持80%的光能集中在0〃.2~0〃.4,甚至更好。
下面对几个有代表性的大型望远镜分别作一些介绍:
凯克望远镜(KeckI,KeckII)
KeckI和KeckII分别在1991年和1996年建成,这是当前世界上已投入工作的最大口径的光学望远镜,因其经费主要由企业家凯克(KeckWM)捐赠(KeckI为9400万美元,KeckII为7460万美元)而命名。这两台完全相同的望远镜都放置在夏威夷的莫纳克亚,将它们放在一起是为了做干涉观测。
它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。
"象Keck这样的大望远镜,可以让我们沿着时间的长河,探寻宇宙的起源,Keck更是可以让我们看到宇宙最初诞生 的时刻"。
欧洲南方天文台甚大望远镜(VLT)
欧洲南方天文台自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动光学系统支撑,指向精度为1〃,跟踪精度为0.05〃,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
现在已完成了其中的两台,预计于2000年可全部完成。
双子望远镜(GEMINI)
双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适 应光学系统使红外区接近衍射极限。
该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光,整个系统预计在2001年验收后正式投入使用。
昴星团(日本)8米望远镜(SUBARU)
这是一台8米口径的光学/红外望远镜。它有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成象质量;二是可实现0.1〃的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。此望远镜采用Serrurier桁架,可使主镜框与副镜框在移动中保持平行。
大天区多目标光纤光谱望远镜(LAMOST)
这是中国正在兴建中的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它的技术特色是:
1.把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。
2.球面主镜和反射镜均采用拼接技术。
3.多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。
LAMOST把普测的星系极限星等推到20.5m,比SDSS计划高2等左右,实现107个星系的光谱普测,把观测目标的数量提高1个量级。
[编辑本段]射电望远镜
1932年央斯基(Jansky.K.G)用无线电天线探测到来自银河系中心(人马座方向)的射电辐射,这标志着人类打开了在传统光学波段之外进行观测的第一个窗口。
第二次世界大战结束后,射电天文学脱颖而出,射电望远镜为射电天文学的发展起了关键的作用,比如:六十年代天文学的四大发现,类星体,脉冲星,星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。射电望远镜的每一次长足的进步都会毫无例外地为射电天文学的发展树立一个里程碑。
英国曼彻斯特大学于1946年建造了直径为66.5米的固定式抛物面射电望远镜,1955年又建成了当时世界上最大的可转动抛物面射电望远镜;六十年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表面上的,不能转动,这是世界上最大的单孔径射电望远镜。
1962年,Ryle发明了综合孔径射电望远镜,他也因此获得了1974年诺贝尔物理学奖。综合孔径射电望远镜实现了由多个较小天线结构获得相当于大口径单天线所能取得的效果。
1967年Broten等人第一次记录到了VLBI干涉条纹。
七十年代,联邦德国在玻恩附近建造了100米直径的全向转动抛物面射电望远镜,这是世界上最大的可转动单天线射电望远镜。
八十年代以来,欧洲的VLBI网(EVN),美国的VLBA阵,日本的空间VLBI(VSOP)相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。
中国科学院上海天文台和乌鲁木齐天文站的两架25米射电望远镜作为正式成员参加了美国的地球自转连续观测计划(CORE)和欧洲的甚长基线干涉网(EVN),这两个计划分别用于地球自转和高精度天体测量研究(CORE)和天体物理研究(EVN)。这种由各国射电望远镜联合进行长基线干涉观测的方式,起到了任何一个国家单独使用大望远镜都不能达到的效果。
另外,美国国立四大天文台(NARO)研制的100米单天线望远镜(GBT),采用无遮挡(偏馈),主动光学等设计,该天线目前正在安装中,2000年有可能投入使用。
国际上将联合发展接收面积为1平方公里的低频射电望远镜阵(SKA),该计划将使低频射电观测的灵敏度约有两个量级的提高,有关各国正在进行各种预研究。
在增加射电观测波段覆盖方面,美国史密松天体物理天文台和中国台湾天文与天体物理研究院正在夏威夷建造国际上第一个亚毫米波干涉阵(SMA),它由8个6米的天线组成,工作频率从190GHz到85z,部分设备已经安装。美国的毫米波阵(MMA)和欧洲的大南天阵(LAS)将合并成为一个新的毫米波阵计划――ALMA。这个计划将有64个12米天线组成,最长基线达到10公里以上,工作频率从70到950GHz,放在智利的Atacama附近,如果合并顺利,将在2001年开始建造,日本方面也在考虑参加该计划的可能性。
在提高射电观测的角分辨率方面,新一代的大型设备大多数考虑干涉阵的方案;为了进一步提高空间VLBI观测的角分辨率和灵敏度,第二代空间VLBI计划――ARISE(25米口径)已经提出。
相信这些设备的建成并投入使用将会使射电天文成为天文学的重要研究手段,并会为天文学发展带来难以预料的机会。
[编辑本段]空间望远镜
我们知道,地球大气对电磁波有严重的吸收,我们在地面上只能进行射电、可见光和部分红外波段的观测。随着空间技术的发展,在大气外进行观测已成为可能,所以就有了可以在大气层外观测的空间望远镜(Spacetelescope)。空间观测设备与地面观测设备相比,有极大的优势:以光学望远镜为例,望远镜可以接收到宽得多的波段,短波甚至可以延伸到100纳米。没有大气抖动后,分辨本领可以得到很大的提高,空间没有重力,仪器就不会因自重而变形。前面介绍的紫外望远镜、X射线望远镜、γ射线望远镜以及部分红外望远镜的观测都都是在地球大气层外进行的,也属于空间望远镜。
哈勃空间望远镜[2](HST)
这是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受到公众注目的一项。它筹建于1978年,设计历时7年,1989年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使HST性能达到甚至超过了原先设计的目标,观测结果表明,它的分辨率比地面的大型望远镜高出几十倍。
1997年的维修中,为HST安装了第二代仪器:有空间望远镜成象光谱仪、近红外照相机和多目标摄谱仪,把HST的观测范围扩展到了近红外并提高了紫外光谱上的效率。
1999年12月的维修为HST更换了陀螺仪和新的计算机,并安装了第三代仪器――高级普查摄像仪,这将提高HST在紫外-光学-近红外的灵敏度和成图的性能。
HST对国际天文学界的发展有非常重要的影响。
二十一世纪初的空间天文望远镜
"下一代大型空间望远镜"(NGST)和"空间干涉测量飞行任务"(SIM)是NASA"起源计划"的关键项目,用于探索在宇宙最早期形成的第一批星系和星团。其中,NGST是大孔径被动制冷望远镜,口径在4~8米之间,是HST和SIRTF(红外空间望远镜)的后续项目。它强大的观测能力特别体现在光学、近红外和中红外的大视场、衍射限成图方面。将运行于近地轨道的SIM采用迈克尔干涉方案,提供毫角秒级精度的恒星的精密绝对定位测量,同时由于具有综合成图能力,能产生高分辨率的图象,所以可以用于实现搜索其它行星等科学目的。
"天体物理的全天球天体测量干涉仪"(GAIA)将会在对银河系的总体几何结构及其运动学做全面和彻底的普查,在此基础上开辟广阔的天体物理研究领域。GAIA采用Fizeau干涉方案,视场为1°。GAIA和SIM的任务在很大程度上是互补的。
月基天文台
由于无人的空间天文观测只能依靠事先设计的观测模式自动进行,非常被动,如果在月球表面上建立月基天文台,就能化被动为主动,大大提高观测精度。"阿波罗16号"登月时宇航员在月面上拍摄的大麦哲伦星云照片表明,月面是理想的天文观测场所。建立月基天文台具有以下优点:
1.月球上为高度真空状态,比空间天文观测设备所处还要低百万倍。
2.月球为天文望远镜提供了一个稳定、坚固和巨大的观测平台,在月球上观测只需极简单的跟踪系统。
3.月震活动只相当于地震活动的10-8,这一点对于在月面上建立几十至数百公里的长基线射电、光学和红外干涉系统是很有利的。
4.月球表面上的重力只有地球表面重力的1/6,这会给天文台的建造带来方便。另外,在地球上所有影响天文观测的因素,比如大气折射、散射和吸收,无线电干扰等,在月球上均不存在。
美国、欧洲和日本都计划在未来的几年内再次登月并在月球上建立永久居住区,可以预料,人类在月球上建立永久性基地后,建立月基天文台是必然的。
对于天文和天体物理的科研领域来讲,空间观测项目无论从人员规模上还是经费上都是相当可观的,如世界上最大的地面光学望远镜象Keck的建设费用(7000~9000万美元)只相当于一颗普通的空间探测卫星的研制和发射费用。并且,空间天文观测的难度高,仪器的接收面积小,运行寿命短,难于维修,所以它并不能取代地面天文观测。在二十一世纪,空间观测与地面观测将是天文观测相辅相成的两翼。
[编辑本段]其它波段的望远镜
我们知道,在地球表面有一层浓厚的大气,由于地球大气中各种粒子与天体辐射的相互作用(主要是吸收和反射),使得大部分波段范围内的天体辐射无法到达地面。人们把能到达地面的波段形象地称为"大气窗口",这种"窗口"有三个。
光学窗口:这是最重要的一个窗口,波长在300~700纳米之间,包括了可见光波段(400~700纳米),光学望远镜一直是地面天文观测的主要工具。
红外窗口:红外波段的范围在0.7~1000微米之间,由于地球大气中不同分子吸收红外线波长不一致,造成红外波段的情况比较复杂。对于天文研究常用的有七个红外窗口。
射电窗口:射电波段是指波长大于1毫米的电磁波。大气对射电波段也有少量的吸收,但在40毫米~30米的范围内大气几乎是完全透明的,我们一般把1毫米~30米的范围称为射电窗口。
大气对于其它波段,比如紫外线、X射线、γ射线等均为不透明的,在人造卫星上天后才实现这些波段的天文观测。
红外望远镜
最早的红外观测可以追溯到十八世纪末。但是,由于地球大气的吸收和散射造成在地面进行的红外观测只局限于几个近红外窗口,要获得更多红外波段的信息,就必须进行空间红外观测。现代的红外天文观测兴盛于十九世纪六、七十年代,当时是采用高空气球和飞机运载的红外望远镜或探测器进行观测。
1983年1月23日由美英荷联合发射了第一颗红外天文卫星IRAS。其主体是一个口径为57厘米的望远镜,主要从事巡天工作。IRAS的成功极大地推动了红外天文在各个层次的发展。直到现在,IRAS的观测源仍然是天文学家研究的热点目标。
1995年11月17日由欧洲、美国和日本合作的红外空间天文台(ISO)发射升空并进入预定轨道。ISO的主体是一个口径为60厘米的R-C式望远镜,它的功能和性能均比IRAS有许多提高,它携带了四台观测仪器,分别实现成象、偏振、分光、光栅分光、F-P干涉分光、测光等功能。与IRAS相比,ISO从近红外到远红外,更宽的波段范围;有更高的空间分辨率;更高的灵敏度(约为IRAS的100倍);以及更多的功能。
ISO的实际工作寿命为30个月,对目标进行定点观测(IRAS的观测是巡天观测),这能有的放矢地解决天文学家提出的问题。预计在今后的几年中,以ISO数据为基础的研究将会成为天文学的热点之一。
从太阳系到宇宙大尺度红外望远镜与光学望远镜有许多相同或相似之处,因此可以对地面的光学望远镜进行一些改装,使它能同时也可从事红外观测。这样就可以用这些望远镜在月夜或白天进行红外观测,更大地发挥观测设备的效率。
紫外望远镜
紫外波段是介于X射线和可见光之间的频率范围,观测波段为3100~100埃。紫外观测要放在150公里的高度才能进行,以避开臭氧层和大气的吸收。第一次紫外观测是用气球将望远镜载上高空,以后用了火箭,航天飞机和卫星等空间技术才使紫外观测有了真正的发展。
紫外波段的观测在天体物理上有重要的意义。紫外波段是介于X射线和可见光之间的频率范围,在历史上紫外和可见光的划分界限在3900埃,当时的划分标准是肉眼能否看到。现代紫外天文学的观测波段为3100~100埃,和X射线相接,这是因为臭氧层对电磁波的吸收界限在这里。
1968年美国发射了OAO-2,之后欧洲也发射了TD-1A,它们的任务是对天空的紫外辐射作一般性的普查观测。被命名为哥白尼号的OAO-3于1972年发射升空,它携带了一架0.8米的紫外望远镜,正常运行了9年,观测了天体的950~3500埃的紫外谱。
1978年发射了国际紫外探测者(IUE),虽然其望远镜的口径比哥白尼号小,但检测灵敏度有了极大的提高。IUE的观测数据成为重要的天体物理研究资源。
1990年12月2~11日,哥伦比亚号航天飞机搭载Astro-1天文台作了空间实验室第一次紫外光谱上的天文观测;1995年3月2日开始,Astro-2天文台完成了为期16天的紫外天文观测。
1992年美国宇航局发射了一颗观测卫星――极远紫外探索卫星(EUVE),是在极远紫外波段作巡天观测。
1999年6月24日FUSE卫星发射升空,这是NASA的"起源计划"项目之一,其任务是要回答天文学有关宇宙演化的基本问题。
紫外天文学是全波段天文学的重要组成部分,自哥白尼号升空至今的30年中,已经发展了紫外波段的EUV(极端紫外)、FUV(远紫外)、UV(紫外)等多种探测卫星,覆盖了全部紫外波段。
X射线望远镜
X射线辐射的波段范围是0.01-10纳米,其中波长较短(能量较高)的称为硬X射线,波长较长的称为软X射线。天体的X射线是根本无法到达地面的,因此只有在六十年代人造地球卫星上天后,天文学家才获得了重要的观测成果,X射线天文学才发展起来。早期主要是对太阳的X射线进行观测。
1962年6月,美国麻省理工学院的研究小组第一次发现来自天蝎座方向的强大X射线源,这使非太阳X射线天文学进入了较快的发展阶段。七十年代,高能天文台1号、2号两颗卫星发射成功,首次进行了X射线波段的巡天观测,使X射线的观测研究向前迈进了一大步,形成对X射线观测的热潮。进入八十年代以来,各国相继发射卫星,对X射线波段进行研究:
1987年4月,由前苏联的火箭将德国、英国、前苏联、及荷兰等国家研制的X射线探测器送入太空;
1987年日本的X射线探测卫星GINGA发射升空;
1989年前苏联发射了一颗高能天体物理实验卫星――GRANAT,它载有前苏联、法国、保加利亚和丹麦等国研制的7台探测仪器,主要工作为成象、光谱和对爆发现象的观测与监测;
1990年6月,伦琴X射线天文卫星(简称ROSAT)进入地球轨道,为研究工作取得大批重要的观测资料,到现在它已基本完成预定的观测任务;
1990年12月"哥伦比亚"号航天飞机将美国的"宽带X射线望远镜"带入太空进行了为期9天的观测;
1993年2月,日本的"飞鸟"X射线探测卫星由火箭送入轨道;
1996年美国发射了"X射线光度探测卫星"(XTE),
1999年7月23日美国成功发射了高等X射线天体物理设备(CHANDRA)中的一颗卫星,另一颗将在2000年发射;
1999年12月13日欧洲共同体宇航局发射了一颗名为XMM的卫星。
2000年日本也将发射一颗X射线的观测设备。
以上这些项目和计划表明,未来几年将会是一个X射线观测和研究的高潮。
γ射线望远镜
γ射线比硬X射线的波长更短,能量更高,由于地球大气的吸收,γ射线天文观测只能通过高空气球和人造卫星搭载的仪器进行。
1991年,美国的康普顿(γ射线)空间天文台(ComptonGRO或CGRO)由航天飞机送入地球轨道。它的主要任务是进行γ波段的首次巡天观测,同时也对较强的宇宙γ射线源进行高灵敏度、高分辨率的成象、能谱测量和光变测量,取得了许多有重大科学价值的结果。
CGRO配备了4台仪器,它们在规模和性能上都比以往的探测设备有量级上的提高,这些设备的研制成功为高能天体物理学的研究带来了深刻的变化,也标志着γ射线天文学开始逐渐进入成熟阶段。CGRO携带的四台仪器分别是:爆发和暂时源实验(BATSE),可变向闪烁光谱仪实验(OSSE),1Mev~30Mev范围内工作的成象望远镜(COMPTEL),1Mev~30Mev范围内工作的成象望远镜(COMPTEL)。
受到康普顿空间天文台成功的鼓舞,欧洲和美国的科研机构合作制订了一个新的γ射线望远镜计划-INTEGRAL,准备在2001年送入太空,它的上天将为康普顿空间天文台之后的γ射线天文学的进一步发展奠定基础。
nanosurf
2023-06-13 广告
折射式 就是物镜和目镜都是透镜 光通玻璃镜片的折射而汇聚和角放大 反射式 主镜是反射镜 旋转抛物面 副镜可以是平面镜 或旋转双曲面等 目镜还是透镜 通过两次反射和目镜的折射而放大 折反式 光先是通过修正玻璃 再通过反射主镜反射到副镜 再通过... 点击进入详情页
本回答由nanosurf提供
lvdhm
2009-10-30 · TA获得超过227个赞
知道答主
回答量:249
采纳率:0%
帮助的人:237万
展开全部
百度好像没办法把很多图都放进来,下面的空白处是图片,给楼主一个参考链接楼主可以详细看看哦,里面还有很多天文望远镜的介绍,就不一一粘贴了O(∩_∩)O~

望远镜按光学结构主要分三大类型:折射式、反射式、及折反射式。

折射镜 外貌及内部 光学构造

折射式望远镜{十七世纪初由科学家伽利略发明,是最早出现的望远镜。当时的折射镜十分简单,镜筒上端是单片凸透镜片,另一端焦点位置则用一片凹透镜片作为目镜把成像放大,所以成像出现很大色差,极影响成像的清晰度,直至后期消色差物镜被发明,望远的质素才大为改善。消色差物镜基本上由两片不同折射率的玻璃透镜组成?z见右上图?{,达到消除色差效果。现代的折射镜都是采用消色差物镜组合低品质或玩具的例外,更高要求的则采用三镜片物镜,或使用低色散玻璃,如萤石玻璃等来制造物镜,但这类望远镜售价十分高昂。目前,技术水平较高的厂家以传统标准光学玻璃制造的消色差物镜己达到颇理想效果,近年由于技术提高和产量增加,供应业余爱好者的商品售价更较多年前便宜。

反射镜 外貌及内部 光学构造

反射式望远镜折射镜出现后约半个世纪 1668年, 科学家牛顿发明了反射镜,所以这类 望远镜一直以 牛顿式反射镜 Newtonian 称呼。当时牛顿认为折射镜的透镜做成色差,影响成像的清晰度,所以发明了反射镜,因为反射镜不会做成色差现象。牛顿式反射镜是由一块凹反射主镜及一块平面副镜组成,平面副镜放置在镜筒前端成 45 度角,光线进入镜筒后,经主镜反射回前端的副镜再屈折 90 度至镜筒外侧聚焦成像,再经目镜放大。所以牛顿式反射镜是在镜筒上端外侧观看见上图。牛顿当年的反射镜采用铜材料制成主镜,后来才发展至采用玻璃并披上金属银作反射膜,现今的主镜和副镜都是镀上铝金属膜和加上保护膜,望远镜可使用很长时间而无须重镀反射膜。牛顿式反射镜是三类型望远镜中最易制造的一种,所以业余者自制天文镜也造反这款型式,对于家生产来说,牛顿式反射镜自然是售价最便宜,所以亦较多入门者选用。

折反射镜 外貌及内部光学构造

折反射式望远镜是二十世纪才发明的望远镜,这类望远镜有两类开式,一类是施密特卡式?zSchmidt Cassegrain?{,另一类是马克苏托夫式?zMaksutov?{,但大多数厂制望远镜都以施密特式为主,原因是施密特式的矫正透镜较易生产大口径,所以这类望远镜在口径上有很多选择,而大口径的马克苏托夫望远镜生产困难及售价非常昂贵,所以商品 都以小口径为多。施密特卡式望远镜由反射主镜副镜,及矫正透镜三部份组成。镜筒前端的矫正透镜?zCorrector?{看似平面镜,但实际是高技术磨制的一片呈波浪型微凹透镜,反射主镜中心则开有一圈孔,以便光线经副镜反射后穿过主镜在镜后聚焦,由于光线在折反身镜内来回反射及由副镜延长焦距的作用,所以折反身镜的镜筒设计可以很短,即使口径较大,望远镜仍可以便于携带,这是折反射镜的最大优点。

望远镜的结构
天文望远镜
口径:物镜的直径,口径大小决定望远镜的集光力与解像力,口径愈大愈亮,解像力愈高.
焦距:从物镜到焦点距离,一般以"f"表示,单位为mm.如f=600mm表示焦距600mm.
焦比:口径(mm)=焦比.相当于镜头的光圈,以"F"表示;F值越低,亮度越高.
倍率:物镜焦距(mm)÷目镜焦距(mm),物镜焦距越长,或更换越短焦的目镜,倍率越大.
光轴:望远镜中光路的轴心,若光轴偏斜,望远镜便不能发挥最佳性能,严重时可能无法成像.
镀膜:在镜片表面镀上一层特殊的金属化合物,目的是减少反光,增加光线透射率.
寻星镜:是一支低倍的小望远镜同架在主镜上,利用其视野较广的特性,方便搜索天体.
赤道仪
赤道仪的功能除了承载望远镜之外,最重要的是藉由步进马达带动赤经本体,使望远镜能跟随星体移动,常见的有德式与叉式两种,其中又以德式最普遍,以下就以德式赤道仪做简单介绍.
极轴望远镜:天球北极与南极的连线称为极轴,极轴望远镜的功能就是校正赤道仪赤经轴,使其与极轴平行,一般都是内藏在赤经本体之中.
赤经轴:赤道仪中与极轴平行的旋转轴称为赤经轴.
赤纬轴:赤道仪中与极轴垂直的旋转轴称为赤纬轴.
重锤:安装在赤纬轴底部,可上下调整,用来平衡望远镜的重量,平衡的步骤在德式赤道仪中是非常重要的,关系到赤道仪的寿命.
马达:带动赤经轴旋转使赤道仪转速与地球自转同步,需要配合控制器使用.
刻度盘:赤经轴与赤纬轴上都有刻度盘,受限于精度,刻度盘都仅供参考用.
自动导入:某些高阶赤道仪中内藏小型电脑,并储存许多天体位置资料,只要由控制面板输入天体名称,赤道仪就会自动搜寻天体,并导入望远镜视野中.
附录:
常见的光学名词
口 径:意指主镜片之直径.而口径是越大,成像品质越佳,,分解能越高,因为集光力越强.
焦 距:意指光线经由主镜片至成像焦点的距离.
焦 比:就如相机的光圈值同意.数字越小,亮度越亮,为短焦;数字越大,亮度越暗,为长焦.焦比的计算方式:焦距÷主镜口径=F(焦比).F小于5的适合用于直焦摄影;F大于9以上的较适合做观测或扩大摄影.另介于5和9之间的,则是可摄影,观测及扩大摄影用.
倍 率:倍率的计算方式:物镜焦距÷目镜焦距.但望远镜在提升倍率时也有一定的限度,不能过分的提高倍率,否则所见的影像会变得模糊,黑暗,并且视野变的狭窄而看不清影像.适当的高倍应为主镜口径的十倍,最高以十五倍为限.譬如口径六公分的望远镜,以六十倍为适当的倍率,最高不得超过九十倍.
集光力:依肉眼瞳孔在夜间开到最大(瞳孔最大时为6mm 7mm)时所集到的光亮为1.在望远镜来说,与主镜的口径大小有关,口径越大,相对的集光力就越佳.而集光力越佳,其成像品质也就越好.
分解能:简单的说就是将两个相当接近的物体,能将其解测出最小的角度(角距离);而角度最小是以秒(")为表示单位.主镜的有效口径越大,其分解能就越好,看到的影像就越细致;但这数值必须依视野状态及镜片品质好坏,也有着很大的差异.
色 差:即在影像的周边出现如彩虹般的色彩,通常为蓝色,红色或紫色等.这是因为光线在透过镜片时,因镜片的材质的关系,而光线的光波有不同的频率,也会有着不同的折射率.在过去的望远镜是由一片凸透镜所构成,但色差的情形是非常的严重,于是后来加了一片凹透镜来达成消除色差,但这也只消除了红色的色差,于是就在镜片的材质上做了研究.目前可完全消除色差的材质为『萤石』,但其成本较高,所以也另有其它的材质研发出来,如市面上所常听见的ED,SD等.
像 差:一般普通的望远镜在观赏物体时,或许是视野中央的部份很清楚,很清晰,但在视野的周围会模糊或是影像歪曲,变形,这种性质就是像差.几乎所有的望远镜都有像差,而像差的大小会影响到望远镜的价值.
视 野:指所见到范围大小,以角度表示其大小.而肉眼的视野大小约上下六十度,左右九十度的程度.但透过望远镜观看时,因倍率提升,视野相对会变窄.而在低倍率时的视野,一定会比高倍率的视野为大.现在已有广角视野的目镜上市,最大视野已提升到八十四度,让在观看时,舒适度提升了不少.
极限星等:当在无云,无月光及其它人工光害的夜晚,使用望远镜所能看见的最暗星等.肉眼直接所能见的最暗星等约为六等星,但因望远镜能有集光的效果,所以能看见肉眼所直接看不到的为暗光线.相对在望远镜的主镜口径大小,也决定了所能看见的极限星等.

如果楼主是要购镜子的话就推荐几个不错的牌子参开一下,国产博冠,星特狼、好一点的美国tasco
北京中关村大厦403有售,有机会楼主可以去了解一下O(∩_∩)O~
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
156585610
2009-11-07
知道答主
回答量:40
采纳率:0%
帮助的人:20万
展开全部
口径:物镜的直径,口径大小决定望远镜的集光力与解像力,口径愈大愈亮,解像力愈高.
焦距:从物镜到焦点距离,一般以"f"表示,单位为mm.如f=600mm表示焦距600mm.
焦比:口径(mm)=焦比.相当于镜头的光圈,以"F"表示;F值越低,亮度越高.
倍率:物镜焦距(mm)÷目镜焦距(mm),物镜焦距越长,或更换越短焦的目镜,倍率越大.
光轴:望远镜中光路的轴心,若光轴偏斜,望远镜便不能发挥最佳性能,严重时可能无法成像.
镀膜:在镜片表面镀上一层特殊的金属化合物,目的是减少反光,增加光线透射率.
寻星镜:是一支低倍的小望远镜同架在主镜上,利用其视野较广的特性,方便搜索天体.
赤道仪
赤道仪的功能除了承载望远镜之外,最重要的是藉由步进马达带动赤经本体,使望远镜能跟随星体移动,常见的有德式与叉式两种,其中又以德式最普遍,以下就以德式赤道仪做简单介绍.
极轴望远镜:天球北极与南极的连线称为极轴,极轴望远镜的功能就是校正赤道仪赤经轴,使其与极轴平行,一般都是内藏在赤经本体之中.
赤经轴:赤道仪中与极轴平行的旋转轴称为赤经轴.
赤纬轴:赤道仪中与极轴垂直的旋转轴称为赤纬轴.
重锤:安装在赤纬轴底部,可上下调整,用来平衡望远镜的重量,平衡的步骤在德式赤道仪中是非常重要的,关系到赤道仪的寿命.
马达:带动赤经轴旋转使赤道仪转速与地球自转同步,需要配合控制器使用.
刻度盘:赤经轴与赤纬轴上都有刻度盘,受限于精度,刻度盘都仅供参考用.
自动导入:某些高阶赤道仪中内藏小型电脑,并储存许多天体位置资料,只要由控制面板输入天体名称,赤道仪就会自动搜寻天体,并导入望远镜视野中.
附录:
常见的光学名词
口 径:意指主镜片之直径.而口径是越大,成像品质越佳,,分解能越高,因为集光力越强.
焦 距:意指光线经由主镜片至成像焦点的距离.
焦 比:就如相机的光圈值同意.数字越小,亮度越亮,为短焦;数字越大,亮度越暗,为长焦.焦比的计算方式:焦距÷主镜口径=F(焦比).F小于5的适合用于直焦摄影;F大于9以上的较适合做观测或扩大摄影.另介于5和9之间的,则是可摄影,观测及扩大摄影用.
倍 率:倍率的计算方式:物镜焦距÷目镜焦距.但望远镜在提升倍率时也有一定的限度,不能过分的提高倍率,否则所见的影像会变得模糊,黑暗,并且视野变的狭窄而看不清影像.适当的高倍应为主镜口径的十倍,最高以十五倍为限.譬如口径六公分的望远镜,以六十倍为适当的倍率,最高不得超过九十倍.
集光力:依肉眼瞳孔在夜间开到最大(瞳孔最大时为6mm 7mm)时所集到的光亮为1.在望远镜来说,与主镜的口径大小有关,口径越大,相对的集光力就越佳.而集光力越佳,其成像品质也就越好.
分解能:简单的说就是将两个相当接近的物体,能将其解测出最小的角度(角距离);而角度最小是以秒(")为表示单位.主镜的有效口径越大,其分解能就越好,看到的影像就越细致;但这数值必须依视野状态及镜片品质好坏,也有着很大的差异.
色 差:即在影像的周边出现如彩虹般的色彩,通常为蓝色,红色或紫色等.这是因为光线在透过镜片时,因镜片的材质的关系,而光线的光波有不同的频率,也会有着不同的折射率.在过去的望远镜是由一片凸透镜所构成,但色差的情形是非常的严重,于是后来加了一片凹透镜来达成消除色差,但这也只消除了红色的色差,于是就在镜片的材质上做了研究.目前可完全消除色差的材质为『萤石』,但其成本较高,所以也另有其它的材质研发出来,如市面上所常听见的ED,SD等.
像 差:一般普通的望远镜在观赏物体时,或许是视野中央的部份很清楚,很清晰,但在视野的周围会模糊或是影像歪曲,变形,这种性质就是像差.几乎所有的望远镜都有像差,而像差的大小会影响到望远镜的价值.
视 野:指所见到范围大小,以角度表示其大小.而肉眼的视野大小约上下六十度,左右九十度的程度.但透过望远镜观看时,因倍率提升,视野相对会变窄.而在低倍率时的视野,一定会比高倍率的视野为大.现在已有广角视野的目镜上市,最大视野已提升到八十四度,让在观看时,舒适度提升了不少.
极限星等:当在无云,无月光及其它人工光害的夜晚,使用望远镜所能看见的最暗星等.肉眼直接所能见的最暗星等约为六等星,但因望远镜能有集光的效果,所以能看见肉眼所直接看不到的为暗光线.相对在望远镜的主镜口径大小,也决定了所能看见的极限星等.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友85da525
2009-11-01 · TA获得超过1.3万个赞
知道小有建树答主
回答量:710
采纳率:0%
帮助的人:1100万
展开全部
我家有那种折射式光学望远镜,不过不知道是不是你那种,其部位有:目镜,天顶棱镜,调焦螺旋,镜筒,物镜,露罩,地平装置,必要时还可安上三脚架。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
police747
2009-10-30 · TA获得超过133个赞
知道小有建树答主
回答量:150
采纳率:0%
帮助的人:98.6万
展开全部
你先发个图来我给你解释
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式