
问个高数题,那段cos^2t的积分怎么算?我把它变成(cos2t+1)/2,出现了一个神奇的数,就是,sin2arcsiny
1个回答
展开全部
先是坐标变换令y=sint
∫ cos^2tdt==sin2t/4 +t/2
结果就是4sin2(arcsiny)+8arcsiny+4π
sin[arcsiny+arcsiny]=2ycosarcsiny=2y√1-[sin(siny)]^2=2y√1-y^2
代入进去就是了
∫ cos^2tdt==sin2t/4 +t/2
结果就是4sin2(arcsiny)+8arcsiny+4π
sin[arcsiny+arcsiny]=2ycosarcsiny=2y√1-[sin(siny)]^2=2y√1-y^2
代入进去就是了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询