1个回答
展开全部
(2)
a1=8
4(n+1)(Sn+1)=(n+2)^2. an
Sn+1 = (n+2)^2. an / [4(n+1) ] (1)
S(n-1)+1 = (n+1)^2. a(n-1) / (4n) (2)
(1)-(2)
an = (n+2)^2. an / [4(n+1) ] - (n+1)^2. a(n-1) / (4n)
4n(n+1)an = n.(n+2)^2an - (n+1)^3.a(n-1)
n[ (n+2)^2-4(n+1) ] .an = (n+1)^3.a(n-1)
n^3. an = (n+1)^3.a(n-1)
an/a(n-1) = [(n+1)/n]^3
an/a1 = [(n+1)/2]^3
an = (n+1)^3
a1=8
4(n+1)(Sn+1)=(n+2)^2. an
Sn+1 = (n+2)^2. an / [4(n+1) ] (1)
S(n-1)+1 = (n+1)^2. a(n-1) / (4n) (2)
(1)-(2)
an = (n+2)^2. an / [4(n+1) ] - (n+1)^2. a(n-1) / (4n)
4n(n+1)an = n.(n+2)^2an - (n+1)^3.a(n-1)
n[ (n+2)^2-4(n+1) ] .an = (n+1)^3.a(n-1)
n^3. an = (n+1)^3.a(n-1)
an/a(n-1) = [(n+1)/n]^3
an/a1 = [(n+1)/2]^3
an = (n+1)^3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询