展开全部
(1)
lim(x->0)( 1/x^2-1/(tanx)^2)
=lim(x->0)( (tanx)^2-x^2) /[x^2(tanx)^2] (0/0)
=lim(x->0)[ (tanx)(secx)^2-x ] /[x^2(tanx)(secx)^2 + x(tanx)^2]
=lim(x->0)[ (tanx)((tanx)^2+1)-x ] /[x^2(tanx)(secx)^2 + x(tanx)^2]
=lim(x->0) (tanx)^3 /[x^2(tanx)(secx)^2 + x(tanx)^2] ( x~ tanx )
=lim(x->0) 1 /[(secx)^2 + 1]
= 1/2
(2)
f(π)=1
∫(0->π)[ f(x) + f''(x) ] sinx dx =3
f''(x) cts,
∫(0->π)[ f(x) + f''(x) ] sinx dx
=∫(0->π) f(x)sinxdx + ∫(0->π)f''(x)sinx dx
=-∫(0->π) f(x)dcosx + ∫(0->π)f''(x)sinx dx
=-[f(x)cosx](0->π) +∫(0->π) f'(x)cosxdx + ∫(0->π)f''(x)sinx dx
=f(π)+f(0) +∫(0->π) f'(x)dsinx + ∫(0->π)f''(x)sinx dx
=1+f(0) +[ f'(x)sinx](0->π) -∫(0->π) f''(x)sinxdx + ∫(0->π)f''(x)sinx dx
=1+f(0)
=> f(0) = 2
lim(x->0)( 1/x^2-1/(tanx)^2)
=lim(x->0)( (tanx)^2-x^2) /[x^2(tanx)^2] (0/0)
=lim(x->0)[ (tanx)(secx)^2-x ] /[x^2(tanx)(secx)^2 + x(tanx)^2]
=lim(x->0)[ (tanx)((tanx)^2+1)-x ] /[x^2(tanx)(secx)^2 + x(tanx)^2]
=lim(x->0) (tanx)^3 /[x^2(tanx)(secx)^2 + x(tanx)^2] ( x~ tanx )
=lim(x->0) 1 /[(secx)^2 + 1]
= 1/2
(2)
f(π)=1
∫(0->π)[ f(x) + f''(x) ] sinx dx =3
f''(x) cts,
∫(0->π)[ f(x) + f''(x) ] sinx dx
=∫(0->π) f(x)sinxdx + ∫(0->π)f''(x)sinx dx
=-∫(0->π) f(x)dcosx + ∫(0->π)f''(x)sinx dx
=-[f(x)cosx](0->π) +∫(0->π) f'(x)cosxdx + ∫(0->π)f''(x)sinx dx
=f(π)+f(0) +∫(0->π) f'(x)dsinx + ∫(0->π)f''(x)sinx dx
=1+f(0) +[ f'(x)sinx](0->π) -∫(0->π) f''(x)sinxdx + ∫(0->π)f''(x)sinx dx
=1+f(0)
=> f(0) = 2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 原式=lim{(tan^2 x-x^2)/x^4}=lim{(2tanxsec^2 x-2x)/4x^3}=lim{(2tanx-2xcos^2 x)/4x^3}=lim{(2sec^2 x-2cos^2 x+2xsin2x)/12x^2}=lim{(2(1-cos x)(1+COSX)(1+cos
^2 x)+2xsin2xcos^2x)/12x^2}=4/12+4/12=2/3
2 S(0,π)f(x)sinxdx+S(0,π)sinxdf‘(x)=S(0,π)f(x)sinxdx-S(0,π)f‘(x)cosxdx=S(0,π)f(x)sinxdx-f(x)cosx|(0,π)-S(0,π)f(x)sinxdx=-f(x)cosx|(0,π)=f(0)+f(π)=3
f(0)=2
^2 x)+2xsin2xcos^2x)/12x^2}=4/12+4/12=2/3
2 S(0,π)f(x)sinxdx+S(0,π)sinxdf‘(x)=S(0,π)f(x)sinxdx-S(0,π)f‘(x)cosxdx=S(0,π)f(x)sinxdx-f(x)cosx|(0,π)-S(0,π)f(x)sinxdx=-f(x)cosx|(0,π)=f(0)+f(π)=3
f(0)=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询