高一数学,第6题7题
2个回答
展开全部
第六题分母看做1,上下同时乘以8sinπ/7,得出答案-1/8
第七题f(x)=√3/2(sin2wx)+1/2(cos2wx)+1
=sin(2wx+π/6)+1
所以2π/(2w)=π
得出w=1
x∈【0,π/2】 那么2x+π/6∈【π/6,7π/6】=【π/6,π】+【π,7π/6】
容易得出f(x)∈【1/2,2】
第七题f(x)=√3/2(sin2wx)+1/2(cos2wx)+1
=sin(2wx+π/6)+1
所以2π/(2w)=π
得出w=1
x∈【0,π/2】 那么2x+π/6∈【π/6,7π/6】=【π/6,π】+【π,7π/6】
容易得出f(x)∈【1/2,2】
更多追问追答
追问
第六题具体点,不会算
追答
原式=1/(8sianπ/7)X8sinπ/7·cosπ/7·cos2π/7·cos4π/7
=1/(8sianπ/7)x4sin2π/7·cos2π/7·cos4π/7
=1/(8sianπ/7)x2sin4π/7cos4π/7
=1/(8sianπ/7)xsin8π/7
=sin8π/7x1/(8sianπ/7)
=-sin(8π/7-π)x1/(8sianπ/7)
=-1/8
展开全部
6、原式=(2sinπ/7·cosπ/7·cos2π/7·cos4π/7)/(2sinπ/7)
=(sin2π/7·cos2π/7·cos4π/7)/(2sinπ/7)
=(sin4π/7·cos4π/7)/(4sinπ/7)
=(sin8π/7)/(8sinπ/7)
=(-sinπ/7·)/(8sinπ/7)
=-1/8
7、解:(1)f(x)=√3/2·sin2ωx+1/2·cos2ωx=sin(2ωx+π/6)
∵T=2π/(2ω)=π
∴ω=1
(2)f(x)=sin(2x+π/6)
∵x∈[0.π/2]
∴2x+π/6∈[π/6,7π/6]
∴f(x)∈[sin7π/6,sinπ/2]
即f(x)∈[-1/2,1]
=(sin2π/7·cos2π/7·cos4π/7)/(2sinπ/7)
=(sin4π/7·cos4π/7)/(4sinπ/7)
=(sin8π/7)/(8sinπ/7)
=(-sinπ/7·)/(8sinπ/7)
=-1/8
7、解:(1)f(x)=√3/2·sin2ωx+1/2·cos2ωx=sin(2ωx+π/6)
∵T=2π/(2ω)=π
∴ω=1
(2)f(x)=sin(2x+π/6)
∵x∈[0.π/2]
∴2x+π/6∈[π/6,7π/6]
∴f(x)∈[sin7π/6,sinπ/2]
即f(x)∈[-1/2,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询