求解啊,高一数学

frfroji
2014-03-10 · TA获得超过553个赞
知道小有建树答主
回答量:221
采纳率:0%
帮助的人:151万
展开全部
由题意得:a1、a5、a17成等比数列
∴a5² = a1·a17
a5 = a1+4d
a17=a1+16d
∴(a1+4d)² = a1·(a1+16d)
展开得:a1² + 8d·a1 + 16d² = a1² + 16d·a1
∴16d² = 8d·a1
∴a1=2d
∴a5=a1+4d=2d+4d=6d, a17=a1+16d=2d+16d=18d
∴等比数列的公比 q = 3
∴在等比数列{a(kn)}中
a(kn)=ak1·3^(n-1) = a1 ·3^(n-1) = 2d·3^(n-1) …… ①
又∵在等差数列{an}中
a(kn)=a1 + (kn - 1)d = 2d + (kn - 1)d = (kn + 1)d …… ②
∴由①②,得:
2d·3^(n-1) = (kn + 1)d
∴kn = 2·3^(n-1) - 1
∴ nkn = 2n·3^(n-1) - n

分成两部分求和:

第一部分2n·3^(n-1) :
Rn = 2×3^0 + 4×3^1 + 6×3^2 + …… + 2n×3^(n-1)
3Rn = 2×3^1 + 4×3^2 + …… + 2(n-1)×3^(n-1) + 2n×3^n
两式相减,得:
2Rn = 2n×3^n - [2×3^0 + 2×3^1+2×3^2 + …… + 2×3^(n-1)]
= 2n×3^n - 2(1 - 3^n)/(1-3)
=(2n-1)3^n + 1
∴Rn = [(2n-1)3^n + 1] /2

第二部分 - n :
Tn = -1 - 2 - 3 - 4 - …… - n = - (n+1)n/2

∴Sn = Rn + Tn= [(2n-1)3^n + 1] /2 - (n+1)n/2
= [(2n-1)3^n - n² - n + 1] /2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式