求函数y=√3sin2x+cos2x的周期,最大值,最小值,单调递减区间 。求详解
2个回答
展开全部
y=√3sin(2x)+cos(2x)
=2[(√3/2)sin(2x)+(1/2)cos(2x)]
=2sin(2x +π/6)
最小正周期T=2π/2=π
sin(2x+π/6)=1时,y有最大值ymax=2
sin(2x+π/6)=-1时,y有最小值ymin=-2
2kπ+π/2≤2x+π/6≤2kπ+3π/2 (k∈Z)时,函数单调递减,此时
kπ+π/6≤x≤kπ+2π/3 (k∈Z)
函数的单调递减区间为[kπ+π/6,kπ+2π/3 ] (k∈Z)
=2[(√3/2)sin(2x)+(1/2)cos(2x)]
=2sin(2x +π/6)
最小正周期T=2π/2=π
sin(2x+π/6)=1时,y有最大值ymax=2
sin(2x+π/6)=-1时,y有最小值ymin=-2
2kπ+π/2≤2x+π/6≤2kπ+3π/2 (k∈Z)时,函数单调递减,此时
kπ+π/6≤x≤kπ+2π/3 (k∈Z)
函数的单调递减区间为[kπ+π/6,kπ+2π/3 ] (k∈Z)
追问
学霸真是高效
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询