高数证明题:设f(x)及g(x)在闭区间ab上连续,且f(x)≥g(x),证明:若∫(a,b)f(
高数证明题:设f(x)及g(x)在闭区间ab上连续,且f(x)≥g(x),证明:若∫(a,b)f(x)dx=∫(a,b)g(x)dx,则在闭区间ab上f(x)≡g(c)...
高数证明题:设f(x)及g(x)在闭区间ab上连续,且f(x)≥g(x),证明:若∫(a,b)f(x)dx=∫(a,b)g(x)dx,则在闭区间ab上f(x)≡g(c)
展开
3个回答
展开全部
假设f(x)≡g(c)在ab上并不是处处成立,∵两函数在ab上连续,且f(x)>=g(x)
∴必有闭区间cd包含于ab使f(x)>g(x)
∴∫(c,d)f(x)dx > ∫(c,d)g(x)dx
∴∫(a,c)f(x)dx + ∫(c,d)f(x)dx + ∫(d,b)f(x)dx>
∫(a,c)g(x)dx + ∫(c,d)g(x)dx + ∫(d,b)g(x)dx
即∫(a,b)f(x)dx>∫(a,b)g(x)dx
与题设矛盾,所以假设不成立
∴闭区间ab上f(x)≡g(c)
∴必有闭区间cd包含于ab使f(x)>g(x)
∴∫(c,d)f(x)dx > ∫(c,d)g(x)dx
∴∫(a,c)f(x)dx + ∫(c,d)f(x)dx + ∫(d,b)f(x)dx>
∫(a,c)g(x)dx + ∫(c,d)g(x)dx + ∫(d,b)g(x)dx
即∫(a,b)f(x)dx>∫(a,b)g(x)dx
与题设矛盾,所以假设不成立
∴闭区间ab上f(x)≡g(c)
更多追问追答
追问
怎么理解∫(a,b)f(x)dx>∫(a,b)g(x)dx与题设矛盾
是与题目所给的条件矛盾吗
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
g(c)??
更多追问追答
追问
g(x)
追答
嗯,看了下面的,应该是对的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询