高一数学人教必修一到必修四复习总结
2个回答
展开全部
1. 集合
(约4课时)
(1)集合的含义与表示
①通过实例,了解集合的含义,体
素与集合的“属于”关系。
②能选择
、图形语言、集合语言(列举法或
)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的
。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的
与交集的含义,会求两个简单集合的
与交集。
②理解在给定集合中一个
的
的含义,会求给
集的
。
③能使用Venn图表达集合的关系及运算,体会
示对理解抽象概念的作用。
2. 函数概念与
I
(约32课时)
(1)函数
①进一步体会函数是描述变量之间的依赖关系的重要
,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的
,并能简单应用。
④通过已学过的函数特别是
,理解函数的
、最大(小)值及其几何意义;结合具体函数,了解
的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解
模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解
的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的
与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)
①理解对数的概念及其运算性质,知道用
能将一般对数转化成
或
;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解
模型所刻画的
,初步理解
的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的
与特殊点。
③知道指数函数 与对数函数 互为
(a>0,a≠1)。
(4)
通过实例,了解
的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
①结合
的图象,判断
根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用
求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及
增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、
等)的实例,了解函数模型的广泛应用。
(7)实习作业
根据某个主题,收集
前后发生的一些对数学发展起重大作用的历史事件和人物(
、
、
、牛顿、
、
等)的有关资料或现实生活中的函数实例,采取
的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见
的要求。http://wenku.baidu.com/view/83d98de9998fcc22bcd10dfb.html
这是必修四的。
(约4课时)
(1)集合的含义与表示
①通过实例,了解集合的含义,体
素与集合的“属于”关系。
②能选择
、图形语言、集合语言(列举法或
)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的
。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的
与交集的含义,会求两个简单集合的
与交集。
②理解在给定集合中一个
的
的含义,会求给
集的
。
③能使用Venn图表达集合的关系及运算,体会
示对理解抽象概念的作用。
2. 函数概念与
I
(约32课时)
(1)函数
①进一步体会函数是描述变量之间的依赖关系的重要
,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的
,并能简单应用。
④通过已学过的函数特别是
,理解函数的
、最大(小)值及其几何意义;结合具体函数,了解
的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解
模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解
的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的
与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)
①理解对数的概念及其运算性质,知道用
能将一般对数转化成
或
;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解
模型所刻画的
,初步理解
的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的
与特殊点。
③知道指数函数 与对数函数 互为
(a>0,a≠1)。
(4)
通过实例,了解
的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
①结合
的图象,判断
根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用
求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及
增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、
等)的实例,了解函数模型的广泛应用。
(7)实习作业
根据某个主题,收集
前后发生的一些对数学发展起重大作用的历史事件和人物(
、
、
、牛顿、
、
等)的有关资料或现实生活中的函数实例,采取
的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见
的要求。http://wenku.baidu.com/view/83d98de9998fcc22bcd10dfb.html
这是必修四的。
2014-08-18
展开全部
集合,三角函数,线性规划,反函数,对勾函数,log函数,暂时想起这么多,你又不懂的可以具体问我
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |