高一数学急
2个回答
展开全部
1、MP斜率为(1-y1)/(-x1),MQ斜率为(1-y2)/(-x2)
∵MP⊥MQ,∴(1-y1)/(-x1)*(1-y2)/(-x2)=-1 1-y1-y2+y1y2=-x1x2 式子1
将y=kx代入圆的方程 x²+k²x²-2x-2kx+1=0
得到x1x2=c/a=1/(1+k²),x1+x2=-b/a=(2+2k)/(1+k²)
因为y=kx 所以y1y2=kx1kx2=k²/(1+k²),y1+y2=(2k²+2k)/(1+k²)
代入式子1得 1-(2k²+2k)/(1+k²)+k²/(1+k²)=-1/(1+k²)
两边同乘以1+k²,解得 k=1
2、MP斜率为(b-y1)/(-x1),MQ斜率为(b-y2)/(-x2)
∵MP⊥MQ,∴(b-y1)/(-x1)*(b-y2)/(-x2)=-1 b²-b(y1+y2)+y1y2=-x1x2
代入得b²-b(2k²+2k)/(1+k²)+k²/(1+k²)=-1/(1+k²)
(b-1)²k²-2bk+b²+1=0
又b∈(1,3/2),∴k≥1
采纳呗~谢了~
∵MP⊥MQ,∴(1-y1)/(-x1)*(1-y2)/(-x2)=-1 1-y1-y2+y1y2=-x1x2 式子1
将y=kx代入圆的方程 x²+k²x²-2x-2kx+1=0
得到x1x2=c/a=1/(1+k²),x1+x2=-b/a=(2+2k)/(1+k²)
因为y=kx 所以y1y2=kx1kx2=k²/(1+k²),y1+y2=(2k²+2k)/(1+k²)
代入式子1得 1-(2k²+2k)/(1+k²)+k²/(1+k²)=-1/(1+k²)
两边同乘以1+k²,解得 k=1
2、MP斜率为(b-y1)/(-x1),MQ斜率为(b-y2)/(-x2)
∵MP⊥MQ,∴(b-y1)/(-x1)*(b-y2)/(-x2)=-1 b²-b(y1+y2)+y1y2=-x1x2
代入得b²-b(2k²+2k)/(1+k²)+k²/(1+k²)=-1/(1+k²)
(b-1)²k²-2bk+b²+1=0
又b∈(1,3/2),∴k≥1
采纳呗~谢了~
追问
以后再问行吗
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-07-06
展开全部
交给我了
追问
谢谢
快点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询