帮帮忙。不会
1个回答
展开全部
(1)① 在△ABC中,∠ACB=90°,∠CAB=30°,
∴ ∠ABC=60°.
在等边△ABD中,∠BAD=60°,
∴ ∠BAD=∠ABC=60° .
∵ E为AB的中点,
∴ AE=BE.
又∵ ∠AEF=∠BEC ,
∴ △AEF≌△BEC ;
② 在△ABC中,∠ACB=90°,E为AB的中点
∴ CE=1/2AB BE=1/2AB,
∴ ∠BCE=∠EBC=60° .
又∵ △AEF≌△BEC,
∴ ∠AFE=∠BCE=60° .
又∵ ∠D=60°,
∴ ∠AFE=∠D=60° .
∴ FC∥BD
又∵ ∠BAD=∠ABC=60°,
∴ AD∥BC,即FD∥BC
∴ 四边形BCFD是平行四边形;
(2)∵∠BAD=60°,∠CAB=30°
∴∠CAH=90°
在Rt△ABC中,∠CAB=30°,设BC =a
∴ AB=2BC=2a,
∴ AD=AB=2a. 设AH = x ,则 HC=HD=AD-AH=2a-x.
在Rt△ABC中,AC^2=(2a) ^2-a62=3a^2.
在Rt△ACH中,AH^2+AC^2=HC^2,即x^2+3a^2=(2a-x)^ 2.
解得 x=a,即AH=1/4a.
CH=2a-x=2a-1/4a=7/4a
∴AH/CH=1/4A÷7/4a=1/7
∴ ∠ABC=60°.
在等边△ABD中,∠BAD=60°,
∴ ∠BAD=∠ABC=60° .
∵ E为AB的中点,
∴ AE=BE.
又∵ ∠AEF=∠BEC ,
∴ △AEF≌△BEC ;
② 在△ABC中,∠ACB=90°,E为AB的中点
∴ CE=1/2AB BE=1/2AB,
∴ ∠BCE=∠EBC=60° .
又∵ △AEF≌△BEC,
∴ ∠AFE=∠BCE=60° .
又∵ ∠D=60°,
∴ ∠AFE=∠D=60° .
∴ FC∥BD
又∵ ∠BAD=∠ABC=60°,
∴ AD∥BC,即FD∥BC
∴ 四边形BCFD是平行四边形;
(2)∵∠BAD=60°,∠CAB=30°
∴∠CAH=90°
在Rt△ABC中,∠CAB=30°,设BC =a
∴ AB=2BC=2a,
∴ AD=AB=2a. 设AH = x ,则 HC=HD=AD-AH=2a-x.
在Rt△ABC中,AC^2=(2a) ^2-a62=3a^2.
在Rt△ACH中,AH^2+AC^2=HC^2,即x^2+3a^2=(2a-x)^ 2.
解得 x=a,即AH=1/4a.
CH=2a-x=2a-1/4a=7/4a
∴AH/CH=1/4A÷7/4a=1/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询