已知三角形三边长求面积

已知三角形三边长分别为3.23.544.68。求面积是多少?求详解方式!谢谢!... 已知三角形三边长分别为3.2 3.54 4.68。求面积是多少?求详解方式!谢谢! 展开
老衲吃橘子
高粉答主

2018-09-25 · 一个有设计洁癖的科技工作者
老衲吃橘子
采纳数:10 获赞数:39208

向TA提问 私信TA
展开全部

各类三角形求面积方式如下所示:

1.已知三角形底a,高h,则 S=ah/2

2.已知三角形三边a,b,c,则

(海伦公式)(p=(a+b+c)/2)

S=sqrt[p(p-a)(p-b)(p-c)]

=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

3.已知三角形两边a,b,这两边夹角C,则S=1/2

absinC,即两夹边之积乘夹角的正弦值。

4.设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

5.设三角形三边分别为a、b、c,外接圆半径为R

则三角形面积=abc/4R

6.行列式形式

为三阶行列式,此三角形

 

在平面直角坐标系内

 ,这里 

选取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小。

该公式的证明可以借助“两夹边之积乘夹角的正弦值”的面积公式 。

7.海伦——秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

8.根据三角函数求面积:

S= ½ab sinC=2R² sinAsinBsinC= a²sinBsinC/2sinA

注:其中R为外切圆半径。

9.根据向量求面积:

其中,(x1,y1,z1)与(x2,y2,z2)分别为向量AB与AC在空间直角坐标系下的坐标表达,即:

向量临边构成三角形面积等于向量临边构成平行四边形面积的一半。

扩展资料

三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。

常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

资料来源:三角形面积公式_百度百科

三乐大掌柜
高粉答主

2019-10-10 · 专注教育内容,关注我,没错的
三乐大掌柜
采纳数:331 获赞数:6844

向TA提问 私信TA
展开全部

这道题知道三角形三条边,如何求面积?巧妙应用海伦公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手机用户24587
推荐于2016-01-02 · TA获得超过164个赞
知道答主
回答量:100
采纳率:0%
帮助的人:101万
展开全部
已知三角形的三边分别是a、b、c,
先算出周长的一半s=1/2(a+b+c)
则该三角形面积S=根号[s(s-a)(s-b)(s-c)]

这个公式叫海伦——秦九昭公式

证明:
设三角形的三边a、b、c的对角分别为A、B、C,
则根据余弦定理c²=a²+b²-2ab·cosC,得

cosC = (a²+b²-c²)/2ab

S=1/2*ab*sinC
=1/2*ab*√(1-cos²C)
=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]
=1/4*√[4a²b²-(a²+b²-c²)²]
=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]
=1/4*√{[(a+b)²-c²][c²-(a-b)²]}
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设s=(a+b+c)/2
则s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[s(s-a)(s-b)(s-c)]

所以,三角形ABC面积S=√[s(s-a)(s-b)(s-c)]

证明完毕

{*是乘号的意思,√是根号的意思}
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式