高等数学: 利用函数的凹凸性,证明下列不等式

·(e^x+e^y)/2>e^((x+y)/2)(x不等于y),来点过程。。。。。。... ·(e^x+e^y)/2>e^((x+y)/2)(x不等于y),来点过程。。。。。。 展开
匿名用户
2014-05-22
展开全部
你的问题真让人晕,希望下面的解答对你有帮助凹函数的性质:
若f(x)是凹函数,
则[f(x1)+f(x2)]/2>f[(x1+x2)/2]

因为f(x)=x^n (n>1)是凹函数
故[f(x)+f(y)]/2>f[(x+y)/2]
即 (x^n+y^n)/2 > ( (x+y)/2 ) ^n
匿名用户
2014-05-22
展开全部
mtam+hmd;有点不懂
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式