(2014?安徽)如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结

(2014?安徽)如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是______.(把所有正确... (2014?安徽)如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)①∠DCF=12∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF. 展开
 我来答
鬼鬼Do03
推荐于2016-12-01 · TA获得超过233个赞
知道答主
回答量:146
采纳率:75%
帮助的人:64.8万
展开全部
解:①∵F是AD的中点,
∴AF=FD,
∵在?ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=
1
2
∠BCD,故此选项正确;
延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
∠A=∠FDM
AF=DF
∠AFE=∠DFM

∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;

③∵EF=FM,
∴S△EFC=S△CFM
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误;

④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确.
故答案为:①②④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式