在等比数列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.(

在等比数列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.(1)求数列{an}的通项公式;(2)... 在等比数列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.(1)求数列{an}的通项公式;(2)设bn=log2an,数列{bn}的前n项和为Sn,当S11+S22+S33+…+Snn最大时,求n的值. 展开
 我来答
熊熊昂雄0e7
2014-11-28 · TA获得超过108个赞
知道答主
回答量:148
采纳率:0%
帮助的人:69万
展开全部
(1)因为a1a5+2a3a5+a2a8=25,所以,a32+2a3a5+a52=25
又an>o,a3+a5=5,(3分)
又a3与a5的等比中项为2,所以,a3a5=4
而q∈(0,1),所以,a3>a5,所以,a3=4,a5=1,q=
1
2
,a1=16,
所以,an=16×(
1
2
)
n?1
=25-n(6分)
(2)bn=log2an=5-n,所以,bn+1-bn=-1,
所以,{bn}是以4为首项,-1为公差的等差数列(8分)
所以sn=
n(9?n)
2
?
sn
n
=
9?n
2
(10分)
所以,当n≤8时,
sn
n
>0,
当n=9时,
sn
n
=0,
n>9时,
sn
n
<0,
当n=8或9时,
S1
1
+
S2
2
+
S3
3
+…+
Sn
n
最大.  (13分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式